Theoretical study of the electronic spectra of s-triazine vapour

2009 ◽  
Vol 87 (8) ◽  
pp. 1148-1153 ◽  
Author(s):  
Delano P. Chong

The ionization and excitation spectra of valence and core electrons of s-triazine in the gas phase are studied with ab initio, density functional, and semi-empirical methods. The results are compared with available experimental data and previous calculations. New estimates are proposed for the ionization energies of both valence and core electrons. The calculated excitation energies are consistent with experiment.

2010 ◽  
Vol 88 (8) ◽  
pp. 787-796 ◽  
Author(s):  
Delano P. Chong

The ionization and excitation spectra of valence and core electrons of naphthalene and azulene in the gas phase are studied with density functional theory. The results are compared with available experimental data and previous calculations. New estimates are proposed for the ionization energies of both valence and core electrons and the calculated excitation energies are consistent with experiment.


2013 ◽  
Vol 209 ◽  
pp. 190-193
Author(s):  
Nisarg K. Bhatt ◽  
Brijmohan Y. Thakore ◽  
P.R. Vyas ◽  
A.Y. Vahora ◽  
Asvin R. Jani

Commonly employed quasiharmonic approximation (QHA) is inadequate to account for intrinsic anharmonism such as phonon-phonon interaction, vacancy contribution, etc. Though anharmonic contributions are important at high temperatures and low pressure, complete ab initio calculations are scanty due largely to laborious computational requirements. Nevertheless, some simple semi-empirical schemes can be used effectively to incorporate the anharmonism. In this regards, in the present study we have proposed a simple computational scheme to include the effect of vacancy directly into the description within the mean-field potential approach, which calculates vibrational free energy of ions. Validity of the scheme is verified by taking calcium oxide as a test case. Equilibrium properties at (T,P) = (0,0) condition is obtained within the tight-binding second-moment approximation (TB-SMA), whose parameters were determined through first principles density functional theory. Kohn-Sham equations for core electrons were solved using ultrasoft plane-wave pseudopotential employing the generalized gradient approximation for exchange and correlation. Present findings for thermal expansion and high-T EOS clearly show perceptible improvement over the case when vacancy contribution was not included. Some related thermodynamic properties are also calculated and compared with the available experimental and theoretical data.


2021 ◽  
Vol 23 (37) ◽  
pp. 21078-21086
Author(s):  
Tomomi Shimazaki ◽  
Masanori Tachikawa

In this work, the excitation energies of asymmetric thiazolothizaole (TTz) dye molecules have been theoretically studied using dielectric-dependent density functional theory (DFT).


Author(s):  
Banjo Semire ◽  
Isaiah Ajibade Adejoro ◽  
Olusegun Ayobami Odunola

In this paper, we theoretically studied the geometries, stabilities, electronic and thermodynamic properties of bridged bithiophene S-oxide (BTO-X) derivates (with X = BH2, SiH2, S, S=O, and O) by using semi-empirical methods, ab-initio, and Density functional theory. The geometries and thermodynamic parameters calculated by PM3 were in good agreement with that of B3LYP/6-31G(d). The bandgap calculated by B3LYP/6-31G(d) ranged from 3.94eV (BTO-O)-3.16eV (BTO-BH2). The absorption λmax calculated suing B3LYP/6-31G(d) shifted to longer wavelength with X=BH2, SiH2, and S=O due to enhancement of π-conjugated system whereas, BTO-S and BTO-O shifted to shorter wavelengths as compared to dimmer thiophene S-oxide (2TO).


2014 ◽  
Vol 16 (28) ◽  
pp. 14368-14377 ◽  
Author(s):  
Qiang Cui ◽  
Marcus Elstner

Semi-empirical (SE) methods are derived from Hartree–Fock (HF) or Density Functional Theory (DFT) by neglect and approximation of electronic integrals.


2016 ◽  
Vol 6 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Aleksandr Leonidovich LOUKS ◽  
Evgeny Aleksandrovich KRESTIN ◽  
Andrey Grigor'evich MATVEEV ◽  
Anna Vsevolodovna SHABANOVA ◽  
Aleksandr Irikovich KITAEV

Speeds of free emersion of bubbles (the viscous mode of emersion) are investigated, at emersion of bubbles as quasifi rm sphere under Stokess law. Emersion speeds at deformations of bubbles from spherical to griboobrazny are considered; at the square law of resistance of emersion of large bubbles, at the slow expiration of gas in the landlocked volume of liquid from an opening. Infl uence of geometry of channels on the speed of emersion of bubbles is analyzed. For processing of experimental data semi-empirical methods of the theory of similarity are used.


2014 ◽  
Vol 14 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Saprizal Hadisaputra ◽  
Lorenz R Canaval ◽  
Harno Dwi Pranowo ◽  
Ria Armunanto

The roles of counterions, solvent types and extraction temperatures on the selectivity of 18-crown-6 (L) toward alkaline earth salts MX2 (M = Ca, Sr, Ba; X = Cl-, NO3-) have been studied by density functional method at B3LYP level of theory in gas and solvent phase. In gas phase, the chloride anion Cl- is the preference counterion than nitrate anion NO3-. This result is confirmed by the interaction energies, the second order interaction energies, charge transfers, energy difference between HOMO-LUMO and electrostatic potential maps. The presence of solvent reversed the gas phase trend. It is found that NO3- is the preference counterion in solvent phase. The calculated free energies demonstrate that the solvent types strongly change the strength of the complex formation. The free energies are exothermic in polar solvent while for the non polar solvent the free energies are endothermic. As the temperature changes the free energies also vary where the higher the temperatures the lower the free energy values. The calculated free energies are correlated well with the experimental stability constants. This theoretical study would have a strong contribution in planning the experimental conditions in terms of the preference counterions, solvent types and optimum extraction temperatures.


2017 ◽  
Vol 18 (9) ◽  
pp. 106-117
Author(s):  
I.N. Saliy ◽  
A.S. Kolesnikova ◽  
O.E. Glukhova ◽  
I.V. Kirillova ◽  
E.L. Kossovich ◽  
...  

In this work, a review is presented concerning the most modern theoretical methods aimed at investigation of various nanostructures properties. The basic concepts of ab initio methods, density functional, semi-empirical and empirical methods are considered. The applicability boundaries of calculation schemes utilized in the aforementioned methods are denoted.


2021 ◽  
Author(s):  
Asim Najibi ◽  
Marcos Casanova Paez ◽  
Lars Goerigk

<div> <div> <div> <p>We investigate the effects of range separation of the exchange energy on electronic ground-state properties for recently published double-hybrid density functionals (DHDFs) with the extensive GMTKN55 database for general main-group thermochemistry, kinetics and noncovalent interactions. We include the semi-empirical range-separated DHDFs ωB2PLYP and ωB2GP-PLYP developed by our group for excitation energies, together with their ground-state-parametrized variants, which we denote herein as ωB2PLYP18 and ωB2GP-PLYP18. We also include the non-empirical range-separated DHDFs RSX-0DH and RSX-QIDH. For all six DHDFs, damping parameters for the DFT-D3 dispersion correction (and for its DFT-D4 variant) are presented. We comment on when the range-separated functionals can be more beneficial than their global counterparts, and conclude that range separation alone is no guarantee for overall improved results. We observe that the BLYP-based functionals generally outperform the PBE-based functionals. We finally note that the best-performing double-hybrid density functionals for GMTKN55 are still the semi-empirical range-separated double hybrids ωDSD3-PBEP86-D4 and ωDSD72-PBEP86-D4, the former of which includes a third-order perturbative correlation term in addition to the more conventional second- order perturbation that DHDFs are based upon.</p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document