THE ROLE OF AMORPHOUS INTERMEDIATE PRODUCTS IN THE DEHYDRATION OF CERTAIN HYDRATED SALTS

1951 ◽  
Vol 29 (7) ◽  
pp. 604-632 ◽  
Author(s):  
G. B. Frost ◽  
K. A. Moon ◽  
E. H. Tompkins

Following the dehydration of certain hydrated salts in high vacuum, an evolution of energy occurs. X-ray studies have shown that this energy liberation is due to an amorphous to crystalline transition in the products of dehydration. Measurements have been made of the integral heats of solution of the dehydration products of copper sulphate pentahydrate and zinc sulphate hexahydrate formed at a series of low dehydration pressures. From these measurements, the fractional amounts of relatively high energy amorphous products formed at a series of low dehydration pressures have been calculated. It has been found that as the water vapor pressure near the reaction interface is increased, the fractional amount of high energy product decreases to a minimum, then increases, passes through a maximum, followed by a slow decrease. These results are interpreted in terms of a possible dehydration mechanism, and an estimation made of the effect of water vapor pressure on the over-all reaction rate. In the course of this study, the integral heats of solution of the crystalline hydrates involved have been determined. The heats of transition of the amorphous to crystalline forms of copper and zinc sulphate monohydrates are reported.

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2532
Author(s):  
Ke Wang ◽  
Benjamin Ecker ◽  
Jinsong Huang ◽  
Yongli Gao

Thermal evaporation is an important technique for fabricating methylammonium lead iodide (MAPbI3), but the process is complicated by the need to co-evaporate methylammonium iodide (MAI) and PbI2. In this work, the effect of water vapor during the thermal deposition of MAPbI3 was investigated under high vacuum. The evaporation process was monitored with a residual gas analyzer (RGA), and the film quality was examined with X-ray photoelectron spectroscopy (XPS). The investigations showed that during evaporation, MAI decomposed while PbI2 evaporated as a whole compound. It was found that the residual water vapor reacted with one of the MAI-dissociated products. The higher iodine ratio suggests that the real MAI flux was higher than the reading from the QCM. The XPS analysis demonstrated that the residual water vapor may alter the elemental ratios of C, N, and I in thermally deposited MAPbI3. Morphologic properties were investigated with atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). It was observed that a sample grown with high water vapor pressure had a roughened surface and poor film quality. Therefore, an evaporation environment with water vapor pressure below 10−8 Torr is needed to fabricate high quality perovskite films.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 335-348
Author(s):  
YOUNES KHOSRAVI ◽  
HASAN LASHKARI ◽  
HOSEIN ASAKEREH

Recognitionanddetectionofclimaticparameters inhave animportant role inclimate change monitoring. In this study, the analysis of oneofthe most importantparameters, water vapor pressure (WVP), was investigated. For this purpose, two non-parametric techniques, Mann-Kendall and Sen's Slope Estimator, were used to analyze the WVP trend and to determine the magnitude of the trends, respectively. To analyze these tests, ground station observations [10 stations for period of 44 years (1967-2010)] and gridded data [pixels with the dimension of 9 × 9 km over a 30-year period (1981-2010)] in South and SouthwestofIran were used. By programming in MATLAB software, the monthly, seasonal and annual WVP time series were extracted and MK and Sen's slope estimator tests were done. The results of monthly MK test on ground station observations showed that the significant downward trends are more considerable than significant upward trends. It also showed that the WVP highest frequency was more in warm months, April to September and the highest frequency of significant trends slope was in February and May. The spatial distribution of MK test of monthly gridded WVP time series showed that the upward trends were detected mostly in western zone and near the Persian Gulf in August. On the other hand, the downward trends through months. The maximum and minimum values of positive trends slope occurred in warm months and cold months, respectively. The analysis of the MK test of the annual WVP time series indicated the upward significant trends in the southeast and southwest zones of study area.  


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Pamela L. Dickrell ◽  
N. Argibay ◽  
Osman L. Eryilmaz ◽  
Ali Erdemir ◽  
W. Gregory Sawyer

Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H2O and O2. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.


Sign in / Sign up

Export Citation Format

Share Document