THE REACTION OF 2,2-DIPHENYL-1-PICRYLHYDRAZYL WITH SECONDARY AMINES

1958 ◽  
Vol 36 (12) ◽  
pp. 1729-1734 ◽  
Author(s):  
J. E. Hazell ◽  
K. E. Russell

The reaction of DPPH (2,2-diphenyl-1-picrylhydrazyl) with N-phenyl-1-naphthylamine, N-phenyl-2-naphthylamine, diphenylamine, and methylaniline has been studied and has been shown to be primarily a hydrogen abstraction process. Two moles DPPH react with 1–1.15 moles secondary amine to give 1.7–1.8 moles 2,2-diphenyl-1-picrylhydrazine and further products.The reaction between DPPH and N-phenyl-1-naphthylamine is first order with respect to each reactant. The reaction of DPPH with the other amines is retarded by the major product 2,2-diphenyl-1-picrylhydrazine and the kinetics of the over-all reaction are complex. However second-order rate constants and activation energies have been obtained using initial rates of reaction. Possible reaction mechanisms are discussed.

1962 ◽  
Vol 40 (2) ◽  
pp. 246-255 ◽  
Author(s):  
D. M. Miller ◽  
R. A. Latimer

Rate constants, activation energies, and dissociation constants were determined in a kinetic study of the synthesis and decomposition of a number of N-substituted dithiocarbamates. These data combined with certain spectral evidence are evaluated and reaction mechanisms suggested.


1989 ◽  
Vol 54 (8) ◽  
pp. 2099-2104
Author(s):  
Miroslav Magura ◽  
Ján Vojtko ◽  
Ján Ilavský

The title liquid-phase isothermal esterification kinetics have been measured in the temperature intervals of 110-125 and 110-160 °C for 2,4- and 2,6-diisopropylphenols, resp. The values measured have been used to calculate the rate constants of the respective three steps and to determine the activation energies. 2,6-Diisopropylphenol has been found to react only to the first degree, and the rate constants of the other two reaction steps (k2, k3) were only calculated from the differential equations given by means of a computer.


1957 ◽  
Vol 35 (11) ◽  
pp. 1341-1350 ◽  
Author(s):  
M. J. Dignam ◽  
W. G. Forbes ◽  
D. J. Le Roy

The general features of the mechanism of the over-all process [Formula: see text][Formula: see text] are similar to those for the over-all process [Formula: see text][Formula: see text] studied previously. The reaction is inhibited by HCl. Chains are terminated by two processes, one of which is first order, the other second order in atomic chlorine. The first order process is not entirely diffusion controlled and a theory is advanced to account for its nature; the homogeneous combination of chlorine atoms requires a third body, mono- and di-chloromethyl chloroformate being particularly effective. The activation energy for hydrogen abstraction from monochloromethyl chloroformate by atomic chlorine is 5.2 kcal. per mole. The C—H bond dissociation energy in monochloromethyl chloroformate is estimated to be 99.8 ± 4.5 kcal. per mole.


1994 ◽  
Vol 30 (11) ◽  
pp. 143-146
Author(s):  
Ronald D. Neufeld ◽  
Christopher A. Badali ◽  
Dennis Powers ◽  
Christopher Carson

A two step operation is proposed for the biodegradation of low concentrations (< 10 mg/L) of BETX substances in an up flow submerged biotower configuration. Step 1 involves growth of a lush biofilm using benzoic acid in a batch mode. Step 2 involves a longer term biological transformation of BETX. Kinetics of biotransformations are modeled using first order assumptions, with rate constants being a function of benzoic acid dosages used in Step 1. A calibrated computer model is developed and presented to predict the degree of transformation and biomass level throughout the tower under a variety of inlet and design operational conditions.


1989 ◽  
Vol 54 (5) ◽  
pp. 1311-1317
Author(s):  
Miroslav Magura ◽  
Ján Vojtko ◽  
Ján Ilavský

The kinetics of liquid-phase isothermal esterification of POCl3 with 2-isopropylphenol and 4-isopropylphenol have been studied within the temperature intervals of 110 to 130 and 90 to 110 °C, respectively. The rate constants and activation energies of the individual steps of this three-step reaction have been calculated from the values measured. The reaction rates of the two isomers markedly differ: at 110 °C 4-isopropylphenol reacts faster by the factors of about 7 and 20 for k1 and k3, respectively. This finding can be utilized in preparation of mixed triaryl phosphates, since the alkylation mixture after reaction of phenol with propene contains an excess of 2-isopropylphenol over 4-isopropylphenol.


1970 ◽  
Vol 48 (21) ◽  
pp. 3291-3299 ◽  
Author(s):  
K. G. McCurdy ◽  
B. P. Erno

An investigation has been made of the kinetics of hydration of tricalcium silicate at several temperatures in a large excess of water in the presence of various added ions. The rate data have been interpreted by a reaction mechanism which involves: (a) the first order hydration of tricalcium silicate to form an intermediate product, 1.5CaO•SiO2, which can react by two pathways, (b) the direct first order decomposition of intermediate, 1.5CaO•SiO2, to form lime and silica or (b′) complexing of intermediate with silica and subsequent decomposition to form lime and silica. This reaction mechanism predicts the rate of production of base during the hydration. The effect of various added ions is interpreted in terms of the proposed mechanism.Rate constants and activation energies for the various steps in the proposed mechanism are reported.


The work described in this and the following paper is a continuation of that in parts I and II, devoted to elucidation of the mechanism of the reactions of methylene with chloroalkanes, with particular reference to the reactivities of singlet and triplet methylene in abstraction and insertion processes. The products of the reaction between methylene, prepared by the photolysis of ketene, and 1-chloropropane have been identified and estimated and their dependence on reactant pressures, photolysing wavelength and presence of foreign gases (oxygen and carbon mon­oxide) has been investigated. Both insertion and abstraction mechanisms contribute significantly to the over-all reaction, insertion being relatively much more important than with chloroethane. This type of process appears to be confined to singlet methylene. If, as seems likely, there is no insertion into C—Cl bonds under our conditions (see part IV), insertion into C2—H and C3—H bonds occurs in statistical ratio, approximately. On the other hand, the chlorine substituent reduces the probability of insertion into C—H bonds in its vicinity. As in the chloroethane system, both species of methylene show a high degree of selectivity in their abstraction reactions. We find that k S Cl / k S H >7.7, k T Cl / k T H < 0.14, where the k ’s are rate constants for abstraction, and the super- and subscripts indicate the species of methylene and the type of atom abstracted, respectively. Triplet methylene is discriminating in hydrogen abstraction from 1-C 3 H 7 Cl, the overall rates for atoms attached to C1, C2, C3 being in the ratios 2.63:1:0.


2021 ◽  
Author(s):  
◽  
Asokamali Siriwardena

<p>The reaction of bis-(diaminoethane)nickel(II) chloride, ([Ni(en)2]Cl2 in methanol with formaldehyde and nitroethane in the presence of triethylamine proceeds readily to produce (6, 13-dimethyl-6, 13-dinitro-1, 4, 8, 11-tetraazacyclotetradecane)nickel(II) chloride, [Ni(dini)] - Cl2. Reduction of the nitro groups of this compound by catalytic hydrogenation yields three isomers of the pendant arm macrocyclic complex (6, 13-diamino-6, 13-dimethyl-1, 4, 8, 11-tetraazachyclotetradecane)nickel(II) chloride, designated a-, b- and c-[Ni(diam)]Cl2. These were separated by fractional crystallization. The aisomer was observed to isomerizes slowly in solution to the b- form. A parallel dissociation reaction of the a- isomer was also observed. The demetallation of a- and b- isomers of the diam complex of nickel by reaction with cyanide or concentrated acid at 140 degrees C produces the macrocycle meso-(6, 13-diamino-6, 13-dimethyl-1, 4, 8, 11-tetraazacyclotetra-decane), diam. A variety of hexamine, pentamine and tetramine complexes of diam with nickel(II), copper(II), cobalt(II) and (III), chromium(III), palladium(II), rhodium(III), zinc(II) and cadmium(II) were prepared. Hexamine and tetramine forms of labile metal complexes could be rapidly and reversibly interconverted by altering the pH. The hexamine cobalt(III) cation, [Co(diam)]3+ was by far the most inert of the prepared cobalt(III) complexes, remaining unaffected in hot acidic solutions. In contrast, a single pendant arm of the hexamine [Cr(diam)]3+ cation could be dissociated in acid. (Two possibly triamine complexes of lead were also prepared). These compounds were characterized by elemental analysis, magnetic measurements, electronic, infrared, 1H and 13C nuclear magnetic resonance spectra. The pendant arm protonation constants (log K) of diam and selected complexes of nickel, copper and palladium were calculated from potentiometric titration measurements at 25 degrees C. The log K values for diam at 25 degrees C (I = 0.1 M NaclO4) were 11.15, 9.7, 6.2 and 5.3. Kinetics of the parallel isomerization and dissociation of a-[Ni(dimH2)]4+ in HCl/NaCl solutions were monitored spectrophotometrically at 50 degrees C. The rate of reaction in acidic solutions showed a non-linear dependency on acid concentration. The observed first order rate constant (kobs) for disappearance of a-[Ni(diamH2)]4+ (by isomerization and dissociation) in 2.0 M HCl, 0.1 M NaOH and 2.0 M NaCl were 3.05 x 10-4, 2.0(3) x 10-2 and 5.0 x 10-5 s-1 respectively. The rate of the dissociation component of the reaction of a-[Ni(diamH2)]4+ in 2.0 M HCl at 50 degrees C was 1.82 x 10-7 s-1. Acid bydrolysis kinetics of (Cu[diamH2])(ClO4)4 in hydrochloric acid and perchloric acid at 50 and 70 degrees C were studied spectrophotometrically. The reactions were slow and the observed first order rate constants were to a first approximation independent of the particular acid or its concentration. The observed first order rate constants were 1 x 10-9 and 8 x 10-9 s-1 at 50 and 70 degrees C respectively. Questions about the nature of the reaction being followed have been raised.</p>


1971 ◽  
Vol 26 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Renate Voigt ◽  
Helmut Wenck ◽  
Friedhelm Schneider

First order rate constants of the reaction of a series of SH-, imidazole- and imidazole/SH-compounds with FDNB as well as their pH- and temperature dependence were determined. Some of the tested imidazole/SH-compounds exhibit a higher nucleophilic reactivity as is expected on the basis of their pKSH-values. This enhanced reactivity is caused by an activation of the SH-groups by a neighbouring imidazole residue. The pH-independent rate constants were calculated using the Lindley equation.The kinetics of DNP-transfer from DNP-imidazole to SH-compounds were investigated. The pH-dependence of the reaction displays a maximum curve. Donor in this reaction is the DNP-imidazolecation and acceptor the thiolate anion.The reaction rate of FDNB with imidazole derivatives is two to three orders of magnitude slower than with SH-compounds.No inter- or intra-molecular transfer of the DNP-residue from sulfure to imidazole takes place.


Sign in / Sign up

Export Citation Format

Share Document