PHASE EQUILIBRIUM RELATIONSHIPS IN THE BINARY SYSTEM METHYL ETHYL KETONE–WATER

1960 ◽  
Vol 38 (10) ◽  
pp. 2015-2023 ◽  
Author(s):  
Irwin Siegelman ◽  
C. H. Sorum

A complete investigation of the phase equilibrium relationships in the binary system of the partially miscible liquid pair methyl ethyl ketone–water is presented. The system shows a minimum azeotrope at 73.35 ± 0.05 °C with a composition of 88.45 ± 0.15 wt.% ketone. The azeotrope falls outside of the miscibility gap for this system. The liquid–vapor curves intersect the miscibility gap at the temperature of 73.60 ± 0.05 °C at which two conjugate solutions of compositions 18.10 ± 0.10 and 87.78 ± 0.15 wt.% ketone, respectively, are in equilibrium with a vapor phase of composition 88.00 ± 0.15 wt.% ketone. The partially miscible liquid pair shows an upper consolute temperature of 139 ± 0.5 °C at a composition of 44.9 ± 0.2 wt.% ketone. The liquid–liquid curves intersect the solid–liquid curves at a temperature of −6.0 ± 0.5° C at which two conjugate solutions of composition 40.0 ± 0.2 and 78.0 ± 0.2 wt.% ketone, respectively, are in equilibrium with ice. A binary eutectic exists at a temperature of −89.0 ± 0.5 °C with composition of the eutectic solid equal to 99.4 ± 0.4 wt.% ketone. The freezing point of pure, dry methyl ethyl ketone is determined to be −83.5 ± 0.5 °C.

2015 ◽  
Vol 87 (5) ◽  
pp. 453-460 ◽  
Author(s):  
Jan Rotrekl ◽  
Pavel Vrbka ◽  
Zuzana Sedláková ◽  
Zdeněk Wagner ◽  
Johan Jacquemin ◽  
...  

AbstractIn the present work, the solid–liquid–liquid equilibrium in the binary system of diethylamine (1) and ionic liquid (2) 1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide and solid–liquid equilibrium in system 1-methyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide was studied. Phase equilibrium was determined experimentally by means of a polythermic method. These data were then used to determine the activity coefficients for both ionic liquids. For the pure diethylamine the enthalpy of fusion was determined by differential scanning calorimetry, because to the best of our knowledge, this data is not yet reported in the open literature, a contrario of pure ionic liquids tested during this work.


Author(s):  
Minira M. Agaguseynova ◽  
Gunel I. Amanullayeva ◽  
Zehra E. Bayramova

The available and simple metal complex systems of catalytic oxidation of unsaturated hydrocarbons were developed. It is shown that these systems catalyze the selective liquid-phase oxidation of butene-1 to methyl ethyl ketone by molecular oxygen at low temperature. The best results were revealed using Cu(I)Cl monovalent chloride. The catalyst for the production of methylethylketone is a binary system containing complexes of copper and palladium chloride at a molar ratio of 2:1. Hexamethylphosphoramide is used as the ligand and palladium chloride complex as an additional complex contains benzonitrile. A combined catalyst has been offered. It allows to carry out the oxidation reaction of butene to methyl ethyl ketone under mild conditions (low temperature, atmospheric pressure) with high selectivity and yield of the desired product. The proposed binary system is able to coordinate molecular oxygen and butene-1, and thus it becomes possible to conduct the oxidation reaction not directly between butene-1 and O2, and using a specific complex catalyst system allowing them to react with each other in an activated coordinated state. Absorption properties of catalysts synthesized on the bases of transition metals have been studied and activation of molecular oxygen and butane-1 has been determined. As a result of interaction of coordinated oxygen and butane-1 it is possible to carry out oxidation reaction to methylethylketone in mild condition. The specific feature of the offered binary catalyst is irreversible absorption of molecular oxygen. Mild conditions of the reaction proceeding decreases considerably amount of by-products and simplify obtaining and separation of the main product-methylethylketone. Due to the fact that the absorption of O2 is irreversible and it is possible to easily remove the excess amount of O2 after the formation of the oxygen complex. The developed method has the advantage from the point of view of safety.Forcitation:Agaguseynova M.M., Amanullayeva G.I., Bayramova Z.E. Catalysts of oxidation reaction of butene-1 to methylethylketone. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 2. P. 53-57


2014 ◽  
Vol 34 (1) ◽  
pp. 243-250
Author(s):  
Jianghong DING ◽  
Le XU ◽  
Hao XU ◽  
Haihong WU ◽  
Yueming LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document