Absolute rate constants for hydrocarbon autoxidation. V. The hydroperoxy radical in chain propagation and termination

1967 ◽  
Vol 45 (8) ◽  
pp. 785-792 ◽  
Author(s):  
J. A. Howard ◽  
K. U. Ingold

The hydroperoxy radical (HOO·) is the main chain propagating and terminating radical in the autoxidation of dilute solutions of 1,4-cyclohexadiene and 1,4-dihydronaphthalene in chlorobenzene at 30 °C. The absolute rate constant for the self-reaction of hydroperoxy radicals (chain termination) in nonpolar solvents is very much higher than previously reported values in aqueous media.


1967 ◽  
Vol 45 (8) ◽  
pp. 793-802 ◽  
Author(s):  
J. A. Howard ◽  
K. U. Ingold

Absolute rate constants have been measured for the autoxidation of a large number of hydrocarbons at 30 °C. The chain-propagating and chain-terminating rate constants depend on the structure of the hydrocarbon and also on the structure of the chain-carrying peroxy radical. With certain notable exceptions which are mainly due to steric hindrance, the rate constants for hydrogen-atom abstraction increase in the order primary < secondary < tertiary; and, for compounds losing a secondary hydrogen atom, the rate constants increase in the order unactivated < acyclic activated by a single π-electron system < cyclic activated by a single Π-system < acyclic activated by two π-systems < cyclic activated by two π-systems. The rate constants for chain termination by the self-reaction of two peroxy radicals generally increase in the order tertiary peroxy radicals < acyclic allylic secondary  [Formula: see text] cyclic secondary  [Formula: see text] acyclic benzylic secondary < primary peroxy radicals < hydroperoxy radicals.



1969 ◽  
Vol 47 (16) ◽  
pp. 3017-3029 ◽  
Author(s):  
G. E. Zaikov ◽  
J. A. Howard ◽  
K. U. Ingold

The oxidations of acetaldehyde, heptanal, octanal, cyclohexanecarboxaldehyde, pivaldehyde, and benzaldehyde in chlorobenzene at 0 °C have been studied. These aldehydes oxidize at similar rates under similar conditions because there are compensating changes in the rate constants for chain propagation (kp) and chain termination (2kt). The termination rate constants increase from ∼7 × 106 M−1 s−1 for pivaldehyde and cyclohexanecarboxaldehyde to ∼2 × 109 M−1 s−1 for benzaldehyde. The propagation rate constants increase from ∼1 × 103 M−1 s−1 for pivaldehyde to ∼1 × 104 M−1 s−1 for benzaldehyde.The rate of oxidation of the aldehydes was decreased by the addition of 1,4-cyclohexadiene, tetralin, tetralin hydroperoxide, cumene, cumene hydroperoxide, t-butyl hydroperoxide, and 2,6-di-t-butyl-4-methylphenol. As a result of product analysis and absolute rate constant measurements, it is concluded that the peroxy radicals derived from aldehydes are considerably more reactive in hydrogen atom abstraction from hydrocarbons than are the peroxy radicals derived from the hydrocarbons. In the abstraction from cyclohexadiene, the acylperoxy radicals appear to be from 15 to 70 times as reactive, and the benzoylperoxy radicals about 800–900 times as reactive, as the hydroperoxy radical. The differences in reactivity are very much less pronounced in the abstraction from 2,6-di-t-butyl-4-methylphenol.The great ease of oxidation of all aldehydes, and particularly benzaldehyde, is due at least in part to the high reactivity of the peroxy radicals formed in these reactions.



1982 ◽  
Vol 60 (20) ◽  
pp. 2566-2572 ◽  
Author(s):  
J. A. Howard ◽  
J. H. B. Chenier ◽  
T. Yamada

The major products of the self-reaction of 1,1-diphenylethylperoxyl have been determined from product studies of the autoxidation of 1,1-diphenylethane, induced decomposition of 1,1-diphenylethyl hydroperoxide, and decomposition of 2,2,3,3-tetraphenylbutane under an atmosphere of oxygen. Overall self-reaction is a complex free-radical process involving the intermediacy of 1,1-diphenylethoxyl and 1-phenyl-1-phenoxyethoxyl which undergo H-atom abstraction, β-scission and, in the case of the former radical, rearrangement. Hydroperoxide decomposition under an atmosphere of 36O2 has shown that 1,1-diphenylethylperoxyl undergoes β-scission faster than α-cumylperoxyl at 303 K in solution. The values of the rate constants for self-reaction of Ph2C(Me)O2• relative to those for tert-butylperoxyl are, however, not affected by this reaction. Furthermore they are not affected to any appreciable extent by the efficiency with which Ph2C(Me)O•, formed in nonterminating self-reactions, escape from the solvent cage. They are influenced principally by the first-order rate of decomposition of Ph2C(Me)OOOOC(Me)Ph2.



1983 ◽  
Vol 61 (9) ◽  
pp. 2037-2043 ◽  
Author(s):  
A. Baignée ◽  
J. H. B. Chenier ◽  
J. A. Howard

The major initial products of the self-reaction of α-tetralylperoxyls (C10H11O2•) in chlorobenzene at 303–353 K are equal concentrations of α-tetralol and α-tetralone in ~90% yield based on the number of initiating radicals. These yields are consistent with the non-radical (Russell) mechanism for self-reaction. Low concentrations of bis(α-tetralyl) peroxide are produced, indicating that there is a small but detectable free-radical contribution towards termination. C10H11O2• undergoes β-scission in this temperature range but steady-state concentrations of C10H11• are too low to influence the termination rate constant 2kt, or react with C10H11O2• to give (C10H11O2. α-Tetralol to α-tetralone ratios and total yields of these products are significantly less than 1 and 100%, respectively, in methanol and acetonitrile. Formaldehyde is produced in methanol indicating the involvement of α-hydroxymethylperoxyls, derived from the solvent, in termination. There is no evidence for a chain reaction or a zwitterion intermediate for self-reaction of C10H11O2• in solution.



1965 ◽  
Vol 43 (10) ◽  
pp. 2737-2743 ◽  
Author(s):  
J. A. Howard ◽  
K. U. Ingold

The effect of deuterium substitution on the absolute rate constants for the bimolecular chain termination process in the oxidation of styrene indicates that the α-hydrogen is abstracted in this reaction. The first order chain termination process is suppressed both by deuteration of styrene at the α-position and by the addition of heavy water. A possible mechanism for this termination is proposed. There appear to be small secondary deuterium isotope effects in the propagation reaction.The overall oxidation rates and the propagation rate constants are increased by the addition to the aromatic ring of both electron-attracting and electron-releasing substituents. This is attributed in the former case to the increased stability of the resulting styryl radicals and in the latter case to the increased stability of a dipolar transition state. In hydrogen atom abstraction from 2,6-di-t-butyl-4-methylphenol, the peroxy radical from 3-chlorostyrene is more reactive than that from styrene which, in turn, is more reactive than the peroxy radical from 4-methoxy-styrene.





1968 ◽  
Vol 46 (16) ◽  
pp. 2655-2660 ◽  
Author(s):  
J. A. Howard ◽  
K. U. Ingold

Rate constants have been measured for the chain-terminating self-reactions of six tertiary peroxy radicals. The rate constants vary from ~ 1 × 103 M−1 s−1 for t-butylperoxy to ~ 6 × 104 M−1 s−1 for 1,1-diphenylethylperoxy radicals. It is suggested that the variation in the rate constants may be related to differences in the stability of the alkoxy radical products of tetroxide decomposition.Rate constants for hydrogen atom abstraction from aralkanes by tertiary peroxy radicals do not seem to be significantly affected by the structure of the attacking radical.In solution the triphenylmethylperoxy radical probably exists in equilibrium with the triphenylmethyl radical and oxygen. Chain termination in oxidations involving the triphenylmethylperoxy radical as the chain carrier occurs by the reaction of this radical with a triphenylmethyl radical.



1969 ◽  
Vol 47 (20) ◽  
pp. 3797-3801 ◽  
Author(s):  
J. A. Howard ◽  
K. U. Ingold

The radical induced decomposition of several t-hydroperoxides at 30° has been studied. In the self reaction of t-alkylperoxy radicals the ratio of the rates of alkoxy radical diffusion from the cage to combination in the cage is essentially independent of the size of the t-alkyl group.The rate constant for abstraction from hydroperoxides of the hydroperoxidic hydrogen by alkoxy radicals is about 4 × 106 M−1 s−1 at 30°. This reaction has a deuterium isotope effect, kH/kD ≈ 5.The 1,1-diphenylethoxy radical undergoes a 1,2-phenyl shift to yield the 1-phenyl-1-phenoxyethyl radical more rapidly that it undergoes β-scission.



2008 ◽  
Vol 8 (20) ◽  
pp. 6261-6272 ◽  
Author(s):  
S. Vranckx ◽  
J. Peeters ◽  
S. A. Carl

Abstract. The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D)+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11)×10−10 cm3 s−1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11)×10−10 cm3 s−1 at 719 K. The rate constants determined over the 227 K–400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1)C2H + O(1D) → CH(A) + CO and (kCL2)C2H + O(3P) → CH(A) + CO, both followed by CH(A) → CH(X) + hν, as kCL1(T)/kCL2(T)=(32.8T−3050)/(6.29T+398).



Sign in / Sign up

Export Citation Format

Share Document