13C and 2H spin–lattice relaxation in neopentane-d12

1978 ◽  
Vol 56 (19) ◽  
pp. 2576-2581 ◽  
Author(s):  
Brian A. Pettitt ◽  
Roderick E. Wasylishen ◽  
Ronald Y. Donc ◽  
T. Phil Pitner

The results of a variable temperature study of the 2H and 13C spin–lattice relaxation times in neopentane-d12 are reported. along with those for the 13C's in neopentane at a single temperature. Orientational and angular momentum correlation times derived from these T1's exhibit the following: (i) τ2 is continuous through the melting point with an activation energy of 0.98 kcal/mol, (ii) τJ is more or less constant at 0.33 ± 0.03 ps within 40 K of either side of the melting point, and (iii) they do not conform to the theoretical relationships of extended diffusion, Fokker–Planck, or Langevin theories. The spin–rotation coupling constants are calculated to be −0.69 kHz for neopentane and −0.52 kHz for neopentane-d12

1977 ◽  
Vol 55 (13) ◽  
pp. 2564-2569 ◽  
Author(s):  
Roderick E. Wasylishen ◽  
Brian A. Pettitt

Deuterium nmr spin–lattice relaxation times have been measured for dilute solutions of adamantane-d16 in CH2I2, CHBr3, CCl4, CHCl3, and CH2Cl2. The reorientation correlation times, τ2, calculated from the experimental data are used to calculate τJ, the angular momentum correlation times, assuming both the J-diffusion and Hubbard relations. The derived τJ values suggest that adamantane executes small step diffusion in CH2I2 and CHBr3, and large step diffusion in CCl4, CHCl3, and CH2Cl2. The calculated τJ values do not appear to be related to the mean times between collisions calculated using a hard sphere model. Both variable solvent and variable temperature experiments indicate 1 ps/cP for the viscosity dependence of the adamantane reorientation time, about 1/36th the value predicted using the familiar Stokes–Einstein equation.Carbon-13 and 1H nmr T1 data indicate that reorientation of hexamethylenetetramine in H2O (28 ps/cP), CHCl3 (27 ps/cP), and CHBr3 (18 ps/cP) is severely hindered because of inter-molecular hydrogen bonding.


1979 ◽  
Vol 57 (9) ◽  
pp. 1075-1079 ◽  
Author(s):  
Michael E. Moseley ◽  
Peter Stilbs

Indirect measurements of nitrogen-14 nuclear spin-lattice relaxation times and direct proton coupling constants are presented together with carbon-13 T1 data for a series of alkyl-substituted nucleic acid bases and mixtures thereof in DMSO-d6. With the exception of the guanine NH nitrogen, which possibly experiences a decrease in the electric field gradient upon complexation with cytosine, no indications of significant changes in the electronic environment around the nitrogen nuclei were found for any combination of bases. Forsen–Hoffman spin saturation transfer experiments on the NH and NH2 protons are also presented.


1972 ◽  
Vol 50 (12) ◽  
pp. 1262-1272 ◽  
Author(s):  
Robin L. Armstrong ◽  
James A. Courtney

The spin–lattice relaxation times T1 of 1H, 19F, and 31P nuclei were measured in gaseous samples of BF3, CHF3, CH3F, PH3, and NH3 at room temperature for densities from 0.03 to 10 amagat. In several cases the behavior of T1 at the lowest densities snowed deviations from the linear variation characteristic of the extreme narrowing region. The spin–rotation interaction provides the dominant relaxation mechanism in all cases. The data are analyzed on the basis of the assumption that the collision modulated spin–rotation interaction may be described by a single correlation function which is a simple exponential function of time. Values of an effective spin–rotation constant and a cross section for molecular reorientation are obtained for each gas. The results obtained are compared with those available from other types of experiments. This comparison indicates that the theory for spin–lattice relaxation in dilute gases of symmetric top molecules needs to be carefully reassessed.


1980 ◽  
Vol 58 (23) ◽  
pp. 2709-2713 ◽  
Author(s):  
Harold Booth ◽  
Jeremy Ramsey Everett

The conformational equilibrium in [13C-1-methyl]-cis-1,4-dimethylcyclohexane has been assessed by (a) direct integration of signals due to equatorial and axial methyl carbons in the 13C nmr spectrum at 172 K and (b) by measurement of the 13C chemical shifts of C-1 and C-4 in the spectrum at 300 K. It is concluded that a 13C isotope effect on the position of the degenerate equilibrium in cis-1,4-dimethylcyclohexane is either nonexistent, or is too small to be detected by methods of analyses employed. The 13C nmr data incidental to the study (chemical shifts, coupling constants, spin–lattice relaxation times, nuclear Overhauser enhancements, and 1-bond isotope shifts) are recorded for the title compound and its trans-isomer.


1992 ◽  
Vol 70 (9) ◽  
pp. 2420-2423 ◽  
Author(s):  
Glenn H. Penner ◽  
Stephen I. Daleman ◽  
Angela R. Custodio

The 11B, 10B, and 14N spin–lattice relaxation times (T1) for aqueous solutions of BH3NH3 were measured by NMR spectroscopy. The results of this investigation are consistent with the nuclear quadrupolar coupling constants reported in previous nuclear quadrupolar resonance and microwave studies. The activation energy associated with rotational reorientation of BH3NH3 in aqueous solution is 11.7 ± 0.6 kJ/mol. Electric field gradients were calculated at various levels of abinitio molecular orbital theory, in order to obtain theoretical 14N and 11B quadrupolar coupling constants. At the highest level of calculation (CI(SD)/6-31G**//MP2/6-31G**), these are in agreement with recently reported microwave results but not with previously reported NQR experiments.


1995 ◽  
Vol 50 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Glenn H. Penner ◽  
Baiyi Zhao ◽  
Kenneth R. Jeffrey

Abstract The molecular dynamics of solid (CH3)3NBH3 is investigated by deuterium NMR spectroscopy. Variable temperature lineshape analyses yield activation energies of 27 ± 3, 19 ± 2, and 12.5 ± 2 kJ/mol for -CH3, -N(CH3)3 and -BH3 rotation, respectively. Analysis of the temperature depen­ dence of the spin-lattice relaxation times, T1 , gives activation energies of 33 ± 3, 15 ± 1.5, and 14 ± 1.5 kJ/mol, respectively. Direct comparison of rotational exchange rates (from lineshape simu­ lations) an of rotational correlation times (from T1 analyses) for -N(CH3)3 and -BH3 rotation indicate that the two motions are correlated in solid (CH3)3NBH3 and together constitute a whole molecule reorientation about the N-B bond. This is supported by an internal rotational barrier of 18.0 kJ/mol for-BH3 rotation, obtained from ab initio molecular orbital calculations at the MP2/6-31G* level.


1993 ◽  
Vol 71 (11) ◽  
pp. 1890-1897 ◽  
Author(s):  
Yining Huang ◽  
Ralph M. Paroli ◽  
D.F.R. Gilson ◽  
I.S. Butler

The order–disorder behaviour of 1-chloroadamantane (1-C10H15Cl) has been investigated by differential scanning calorimetry, and variable-temperature vibrational and 13C NMR spectroscopy. The factor group splittings in the vibrational spectra are in accord with the known crystal structures of the two phases. The 13C spin-lattice relaxation times and dipolar dephasing measurements have been analysed to give the barriers to rotation in both phases and to determine the nature of the rotations in each phase. In the ordered phase, the motion is limited to rotation about the molecular axis. In the disordered phase, additional motions occur about axes through the tertiary carbon atoms.


Sign in / Sign up

Export Citation Format

Share Document