Part II. Conformational analysis of 4- and 5-substituted thiazolidine-2-thiones

1980 ◽  
Vol 58 (6) ◽  
pp. 604-616 ◽  
Author(s):  
F. Chanon ◽  
M. Rajzmann ◽  
M. Chanon ◽  
J. Metzger ◽  
G. Pouzard ◽  
...  

Variation of the conformational properties in a series of 4-R-thiazolidine-2-thiones (4-R = Me, Et, iPr, tBu, OH) and 5-R-thiazolidine-2-thiones (5-R = Me, Et, iPr, tBu) is deduced from 1H nmr (Karplus 3J, chemical shifts, 2J44′, 2J55′) 13C nmr data and CNDO-2 calculations. In the absence of any transannular interaction, vicinal constraints and van der Waals requirements of the substituents control the conformational equilibrium. The pseudo-axial arrangement is favoured when 4-R = Me, while the substituent presents no preferential orientation when 5-R = Me. As the size of the 5-alkyl and the 4-alkyl substituent increases, its pseudo-equatorial orientation and the predominance of the C4C5 out-of-plane half-chair conformation are favoured. This does not lead to conformational exclusivity even when 4-R or 5-R is tBu. When 4-R is hydroxy, there is a definite pseudo-axial conformation (anomeric effect) and the ring preference is of the C4 out-of-plane type.

1975 ◽  
Vol 30 (9-10) ◽  
pp. 788-793 ◽  
Author(s):  
Ludger Ernst

During a reinvestigation of the 13C NMR spectra of 1-fluoronaphthalene (1) and of 2-fluoronaphthalene (2) at 20 and 25.16 MHz, uncertainties that existed in the literature about signal assignments for 1 could be cleared. In the spectral analyses for 2 given so far, five out of ten signals were incorrectly assigned. The corrected assignment is supported by extensive 13C{1H} double resonance experiments, by recording of proton-coupled 13C and 13C{19F} spectra and by off-resonance 13C{1H} noise-decoupling. The results show a strong + M-effect of the fluorine substituents on 13C chemical shifts similar to the effects of OH and OCH3 groups. 1H NMR spectra of 1 and 2 could be partially assigned by decoupling of the 19F resonances and by iterative analysis.


1991 ◽  
Vol 46 (3-4) ◽  
pp. 177-182 ◽  
Author(s):  
Hans-W. Rauwald ◽  
Deo-D. Niyonzima

From the leaf exudate of Aloe lateritia ENGLER the C-glucosyl com pounds homonataloin, aloeresin A and aloesin (synon. aloeresin B) were isolated together with the anthraquinone nataloeem odin-8-methylether and spectroscopically identified. Hom onataloin, widely distributed in Aloe species, was separated into homonataloin A and B by combined TLC and DCCC. In their 1 D and 2D 1H NMR spectra only the shifts of the 2′-hydroxyl protons of both glucosyl residues differ significantly, indicative of 10 S (A) resp. 10 S (B) configurations. In both com pounds the anthrone is in β-position of the D-glucopyranosyl, as determined by the large coupling constants of the anomeric protons. The 13C NMR signals are unambiguously assigned by the use of DEPT, APT and gated-decoupling methods. Only the chemical shifts of C -11 and C -14 show significant differences between both diastereomers due to the adjacent 2′-sugar hydroxyls. The two homonataloins differ mostly in optical rotation and circulardichroism due to different configurations at C - 10 of the anthrone part. The absolute configurations of the diastereomers are determined by correlation of their CD spectra with the CD spectra of the structural analogues 7-hydroxyaloins A and B, which shows that hom onataloin A is the 10 S, 1′S-compound and that homonataloin B has 10 R, 1′S-configuration.


1989 ◽  
Vol 54 (7) ◽  
pp. 1928-1939 ◽  
Author(s):  
Miloš Buděšínský ◽  
Jiří Klinot

13C NMR spectra of sixteen lupane and 19β,28-epoxy-18α-oleanane triterpenoids I-XVI were measured and a complete structural assignment of chemical shifts was made. For most compounds also the carbon spin-lattice relaxation times T1 were obtained. Characteristic differences in chemical shifts of some carbon atom signals were found between 2α-methyl-3-oxo and 2α-methyl-1-oxo derivatives II, V and VIII with chair conformation of the ring A on the one hand and their 2β-isomers III, VI and IX (boat form) on the other. Using these 2-methyl ketones as models, the chair-boat population in allobetulone (I), 3-oxo-28-lupanenitrile (IV) and 1-oxo derivative VII was determined. The results agree well with the data obtained by other physical methods.


2014 ◽  
Vol 92 (9) ◽  
pp. 838-848 ◽  
Author(s):  
Vanessa Renee Little ◽  
Keith Vaughan

Five series of a novel class of 4-acyl-1-[2-aryl-1-diazenyl]piperazines have been synthesized and characterized: the 4-acetyl-1-[2-aryl-1-diazenyl]piperazines [series 1]; the 4-cyclohexylcarbonyl-1-[2-aryl-1-diazenyl]piperazines [series 2]; the 4-benzoyl-1-[2-aryl-1-diazenyl]piperazines [series 3]; the benzyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates [series 4]; and the t-butyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates [series 5]. The compounds were synthesized by diazotization of a primary aromatic amine and subsequent coupling to an appropriate secondary amine: 1-acetylpiperazine [series 1]; 1-(cyclohexylcarbonyl)-piperaizine [series 2]; 1-benzoylpiperazine [series 3]; benzyl 1-piperazinecarboxylate [series 4]; and t-butyl piperazine-1-carboxylate (1-BOC-piperazine) [series 5]. The compounds of series 1–5 were characterized by 1H NMR, 13C NMR, high-resolution MS and IR spectroscopy. The model compounds 1,4-di[2-aryl-1-diazenyl]piperazines, and ethyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates were used to facilitate the assignment of the chemical shifts specific to the piperazine ring carbons. HSQC spectra of select compounds established the correlation between proton and carbon resonance signals.


1965 ◽  
Vol 43 (7) ◽  
pp. 2059-2070 ◽  
Author(s):  
R. U. Lemieux ◽  
J. D. Stevens

The effects of long-range and virtual long-range coupling on the observed spectra of acetylated hexopyranoses and pentopyranoses are examined. Use is made of both spin decoupling and specific deuteration for the assignment of signals. It is seen that specific solvent effects on chemical shift can be superior to increasing the applied magnetic field for the resolution of the signals of closely related protons. The alteration of virtual long-range coupling effects in these ways can be useful in the diagnosis of spectra. Empirical rules are derived for estimating the long-range shielding effects which occur on changing configurations. It is seen that the inversion of a center can lead to deshielding of axial protons and to shielding of equatorial protons at other centers relative to the chemical shifts observed in reference compounds wherein all the acetoxy groups are in equatorial orientation. The effects in several cases result in equatorial protons giving their signal to higher field than chemically similar but axial protons. The conformational properties of pentopyranose tetraacetates as estimated from chemical shifts and coupling constants are seen to be in good agreement with expectations based on non-bonding interaction free energies. As expected, 2-deoxy-β-D-ribopyranose triacetate has the 1C-conformation when dissolved in chloroform.


1987 ◽  
Vol 52 (2) ◽  
pp. 409-424 ◽  
Author(s):  
Zdeněk Friedl ◽  
Stanislav Böhm ◽  
Igor Goljer ◽  
Anna Piklerová ◽  
Daniela Poórová ◽  
...  

13C NMR chemical shifts were measured for sixteen N,N-dimethyl-3-(5-substituted-2-furyl)-acrylamides in CDCl3 at 21 °C; the barriers of rotation about the C-N bond ΔGc° were determined by using the 1H NMR coalescence method, and the positions of the IR bands of the ν(C=O) stretching vibrations were measured. The dual substituent parameters (DSP) analysis of the 13C NMR chemical shifts for atoms of the vinylcarboxamide side chain -C(3)H=C(2)H-C(1)=O(-N) gives evidence that the chemical shifts for the C-1 and C-3 atoms are controlled primarily by polar effects (δ(C-3) = -3.12σI - 1.03σR0; λ = ρI/ρR = 3.0), which exert a reverse substituent effect on these atoms. Similarly, the DSP analysis of the ΔGc° and ν(C=O) data shows that the dominant factor of the total substituent effect is the polar effect (λ = 1.95 and 1.70, respectively). A confrontation of the results of the DSP analysis with the CNDO/2 calculated electron densities at the corresponding atoms demonstrates that the reactivity of the entire vinylcarboxamide side chain can be well explained in terms of a combination of the polar effect (π-electron polarization) with resonance effects.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuan-Yuan Ma ◽  
Miao Yan ◽  
Hai-Ru Li ◽  
Yan-Bo Wu ◽  
Xin-Xin Tian ◽  
...  

AbstractBullvalene C10H10 and its analogs semibullvalene C8H8, barbaralane C9H10, and 9-Borabarbaralane C8BH9 are prototypical fluxional molecules with rapid Cope rearrangements at finite temperatures. Detailed bonding analyses performed in this work reveal the existence of two fluxional π-bonds (2 2c-2e π → 2 3c-2e π → 2 2c-2e π) and one fluxional σ-bond (1 2c-2e σ → 1 4c-2e σ → 1 2c-2e σ) in their ground states and transition states, unveiling the universal π + σ double fluxional bonding nature of these fluctuating cage-like species. The highest occupied natural bond orbitals (HONBOs) turn out to be typical fluxional bonds dominating the dynamics of the systems. The 13C-NMR and 1H-NMR shielding tensors and chemical shifts of the model compound C8BH9 are computationally predicted to facilitate future experiments.


1997 ◽  
Vol 75 (6) ◽  
pp. 801-804 ◽  
Author(s):  
Rocío Borges-Argáez ◽  
Leticia Medina-Baizabál ◽  
Filogonio May-Pat ◽  
Luis M. Peña-Rodríguez

A bioassay-guided purification of the methanolic crude extract obtained from the roots of Chiococcaalba (L.) Hitchc. resulted in the isolation of a new, bioactive, metabolite identified as ent-17-hydroxy-16α-kauran-3-one (1). Elucidation of the new structure was based on analyses of the results obtained from various spectroscopic methods (IR, MS, 1H NMR, and 13C NMR) and chemical transformations. The stereochemistry at C16 was assigned by comparing both the proton and carbon chemical shifts of C17 with those reported in the literature. The new kaurane showed weak antimicrobial activity when tested against Staphylococcusaureus. Keywords: medicinal plants, Chiococcaalba, Rubiaceae, kaurane, diterpene, antimicrobial.


1977 ◽  
Vol 55 (13) ◽  
pp. 2575-2581 ◽  
Author(s):  
Arvind Agarwal ◽  
John A. Barnes ◽  
John L. Fletcher ◽  
Michael J. McGlinchey ◽  
Brian G. Sayer

The1H nmr spectrum of [10]-paracyclophane has been recorded at 220 MHz and the methylene protons assigned on the basis of homonuclear decoupled spectra. Local anisotropic contributions to chemical shifts for protons sited above or near the aromatic ring of [10]-paracyclophane have been calculated using a classical model previously proposed by Grant. The residual incremental shift was shown to follow the Waugh–Fessenden–Johnson–Bovey classical ring current model, but the loop separation originally invoked was shown to be unnecessary. These corrected ring current contributions also correlate very well with the quantum-mechanical approach of Haigh and Mallion.


1983 ◽  
Vol 48 (3) ◽  
pp. 877-888 ◽  
Author(s):  
Eva Petráková ◽  
Jan Schraml

All methyl O-benzoyl-β-D-xylopyranosides have been prepared and their 1H and 13C NMR spectra measured in deuteriochloroform solutions. The 1H NMR spectra were analysed to the first order and assigned with the aid of homonuclear decoupling. The 13C chemical shifts were assigned through heteronuclear selective decouling experiments. Some of the 13C chemical shifts observed in di- and tri-O-benzoyl derivatives differ considerably from those calculated according to the direct additivity rule from the shifts in the mono derivatives. It is shown that the nonadditivity is due to a conformational heterogeneity of the series of investigated compounds dissolved in deuteriochloroform. The heterogeneity is evidenced by the vicinal 1H-1H coupling constants and by 13 chemical shifts of C(1) methoxyl carbon atoms.


Sign in / Sign up

Export Citation Format

Share Document