Solution carbocation stabilities measured by internal competition for a hydride ion

1982 ◽  
Vol 60 (17) ◽  
pp. 2180-2193 ◽  
Author(s):  
Nancy E. Okazawa ◽  
Ted S. Sorensen

Although many techniques are known which allow one to compare the stabilities of solution carbocations, that involving the intermolecular competition for a hydride ion is conceptually (but not experimentally) the simplest procedure. This paper describes a variant of this which is experimentally more reliable and which uses intramolecular equilibria where the two competing systems are held together by a —(CH2)n— chain, e.g.[Formula: see text]By systematically varying "n" in this example (n = 0, 1,2, or 3), it has been found that a methylene chain of two or more carbons is necessary in order to minimize steric interactions between the end "systems". It has also been found that all cycloalkyl rings studied (except cyclohexyl) stabilize a cation centre much better than an aliphatic equivalent, i.e. [Formula: see text], in agreement with solvolysis rate studies. The same situation was found when comparing this aliphatic "system" against the 2-norbornyl cation (bicyclic) or against the tricyclic 2-adamantyl cation. In fact, in these cases the equilibria are too lop-sided to obtain numerical values for the equilibrium constants concerned. Finally, three carbocations were looked at where the 2-norbornyl cation structure was pitted against the structurally very related cyclopentyl, bicyclo[2.1.1]hexyl, and bicyclo[3.2.1]octyl cations. In all cases, the 2-norbornyl cation is the more stable. 13C nmr spectroscopy was used as the analytical tool to measure (or attempt to measure) the equilibrium constants. Depending on the rate of the equilibration process, three different techniques are involved and the relative merits of these are discussed in the latter part of the paper.

2002 ◽  
Vol 80 (10) ◽  
pp. 1279-1284 ◽  
Author(s):  
Saeed Ahmad ◽  
Anvarhusein A Isab ◽  
Herman P Perzanowski

Ligand scrambling reactions in cyano(thione)gold(I) complexes ([>C=S-Au-CN]) to form [Au(>C=S)2]+ and [Au(CN)2]– species have been investigated for a series of thiones in DMSO using 13C and 15N NMR spectroscopy. Rapid approach to equilibrium occurred and resulted in distinct signals for the [>C=S-Au-CN] and [Au(CN)2]– complexes, both in 13C and 15N NMR. Equilibrium constants (Keq) were determined for scrambling of all the complexes by integrating the CN resonances in the 13C NMR recorded at 298 K. The influence of various factors (initial concentration, ionic strength, temperature, and solvent polarity) on the Keq value was examined for a representative complex (ImtAuCN (Imt = Imidazolidine-2-thione)).Key words: cyanogold(I) complexes, thiones, ligand scrambling, NMR, Keq.


1971 ◽  
Vol 26 (3) ◽  
pp. 213-222 ◽  
Author(s):  
Wolfgang Voelter ◽  
Günther Jung ◽  
Eberhard Breitmaier ◽  
Ernst Bayer

Pulse - Fourier - Transform-13C-NMR spectroscopy allowed the direct recording of 13C-NMR spectra of amino acids and peptides with natural abundance of 13C isotopes within a reasonable time. The 13C-signals of more than 50 free and protected amino acids and several peptides were assigned. 13C-NMR spectroscopy gives valuable information about the carbon skeleton, thus offering a new analytical tool for the study of biopolymers and their constituents.


1996 ◽  
Vol 74 (8) ◽  
pp. 1564-1571 ◽  
Author(s):  
José Alberto Caram ◽  
María Virginia Mirífico ◽  
Silvia Lucía Aimone ◽  
Enrique Julio Vasini

3-Methyl-4-phenyl-1,2,5-thiadiazole 1,1-dioxide (TMP), as well as 3,4-dimethyl-1,2,5-thiadiazole 1,1-dioxide (TMM), react with ethanol (EtOH), which adds to one of their C = N double bonds. The equilibrium constants for the addition reaction are measured in mixed acetonitrile (ACN) – EtOH solvents by means of UV spectroscopy in the case of TMP, and by 13C NMR spectroscopy in the case of TMM, since TMM presents only terminal UV absorption. Both equilibrium constants are also estimated through cyclic voltammetry (CV) experiments. In the case of TMP, the ethanol molecule adds to the C = N bond located on the methyl-substituted side of the substrate, according to 13C NMR spectroscopy and CV results. The electroreduction characteristics of the substrates and their ethanol addition products are studied using CV techniques in ACN, EtOH, and CAN–EtOH solvent mixtures. The radical anion formed by the first electron transfer to TMM is unstable and decomposes rapidly while that corresponding to TMP undergoes a relatively slow homogeneous second-order reaction with the substrate (k = 3 × 102 M−1 s−1). The equilibrium constant for EtOH addition and the voltammetric properties of the substrates are compared with those of the previously studied 3,4-diphenyl derivative (TPP). Key words: electrochemistry, thiadiazoles, structure–reactivity relations, kinetics.


1983 ◽  
Vol 48 (7) ◽  
pp. 1864-1866
Author(s):  
Jan Bartoň ◽  
Ivan Kmínek

2,7-Dimethyl-2,6-octadiene is formed in the catalytic solution for the dimerization of 2-methyl-1,3-butadiene to β-myrcene (3-methylene-7-methyl-1,6-octadiene), as revealed by mass spectrometry and 13C NMR spectroscopy. Visual observations together with the results of gas chromatographic analysis of the catalytic solution suggest that the formation of 2,7-dimethyl-2,6-octadiene is associated with the transition of the alkali metal (sodium) from the solid phase into the solution. A reaction pathway is suggested accounting for the formation of 2,7-dimethyl-2,6-octadiene in the system.


1982 ◽  
Vol 47 (12) ◽  
pp. 3312-3317 ◽  
Author(s):  
Josef Stuchlík ◽  
Alois Krajíček ◽  
Ladislav Cvak ◽  
Jiří Spáčil ◽  
Petr Sedmera ◽  
...  

Two new alkaloids were isolated from the field ergot. Their structures, N-(D-lysergyl-L-valyl)cyclo(L-valyl-D-prolyl) (IV) and N-(D-lysergyl-L-valyl)cyclo(L-leucyl-D-prolyl) (V), were assigned by mass, 1H and 13C NMR spectroscopy.


1991 ◽  
Vol 56 (12) ◽  
pp. 2917-2935 ◽  
Author(s):  
Eva Klinotová ◽  
Václav Křeček ◽  
Jiří Klinot ◽  
Miloš Buděšínský ◽  
Jaroslav Podlaha ◽  
...  

3β-Acetoxy-21,22-dioxo-18α,19βH-ursan-28,20β-olide (IIIa) reacts with acetic anhydride in pyridine under very mild conditions affording β-lactone IVa and γ-lactones Va and VIIa as condensation products. On reaction with pyridine, lactones Va and VIIa undergo elimination of acetic acid to give unsaturated lactones VIIIa and IXa, respectively. Similarly, the condensation of 20β,28-epoxy-21,22-dioxo-18α,19βH-ursan-3β-yl acetate (IIIb) with acetic anhydride leads to β-lactone IVb and γ-lactone Vb; the latter on heating with pyridine affords unsaturated lactone VIIIb and 21-methylene-22-ketone Xb. The structure of the obtained compounds was derived using spectral methods, particularly 1H and 13C NMR spectroscopy; structure of lactone IVa was confirmed by X-ray diffraction.


1993 ◽  
Vol 58 (8) ◽  
pp. 1914-1918 ◽  
Author(s):  
Jaroslav Kříž ◽  
Luděk Taimr

The structure of a new compound formed in the reaction of ethoxyquin with alkylperoxy radicals was resolved by 1H and 13C NMR spectroscopy (including COSY, NOESY, HHC RCT and SSLR INEPT techniques) and confirmed by mass spectrometry. The structure suggest participation of 4-methyl group of ethoxyquin in the deactivation of peroxy radicals. A mechanism of this reaction is proposed.


1999 ◽  
Vol 64 (6) ◽  
pp. 977-985 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Hans-Jörg Schanz ◽  
Wolfgang Milius ◽  
Catherine McCammon

Sodium hexaethyl-2,4-dicarba-nido-hexaborate(1-) (6), available from hexaethyl-2,4-dicarba- nido-hexaborane(8) (4) by deprotonation, reacts with deuterated methanol, CD3OD, to give back 4 without H/D exchange of the B-H-B hydrogen atom. The reaction of 6 with diethylboron chloride, Et2BCl, affords hexaethyl-2,4-dicarba-closo-hexaborane(6) (7), the first example of a peralkylated carborane of this type. In contrast, the reaction of 6 with boron tribromide, BBr3, leads mainly to 2,3,4,5,6,7-hexaethyl-2,4-dicarba-closo-heptaborane(7) (8), together with the corresponding 1-bromo derivative (9) and the closo-carborane 7 as side products. The reaction of two equivalents of 6 with FeCl2 gives the air-stable sandwich complex bis[hexaethyl-2,4-dicarba-nido-hexaborate(1-)]iron 10 which was characterised by X-ray structural analysis. All products were characterised by 1H, 11B and 13C NMR spectroscopy, and 57Fe Mössbauer spectroscopy was used to study 10.


1989 ◽  
Vol 54 (2) ◽  
pp. 440-445 ◽  
Author(s):  
Vladimír Macháček ◽  
Alexandr Čegan ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The intramolecular nucleophilic addition of N-methyl-N-(2,4,6-trinitrophenyl)glycine anion in methanol-dimethyl sulfoxide mixtures produces spiro[(3-methyl-5-oxazolidinone)-2,1'-(2',4',6'-trinitrobenzenide)]. The spiro adduct has been identified by means of 1H and 13C NMR spectroscopy. This is the first case when the formation of a Meisenheimer adduct with carboxylate ion is observed. Logarithm of the equilibrium constant of adduct formation increases linearly with the mole fraction of dimethyl sulfoxide in its mixture with methanol.


2012 ◽  
Vol 77 (1) ◽  
pp. 293-306 ◽  
Author(s):  
Emanuelle Mercês Barros Soares ◽  
Ivo Ribeiro Silva ◽  
Roberto Ferreira de Novais ◽  
Yan-Yan Hu ◽  
Klaus Schmidt-Rohr

Sign in / Sign up

Export Citation Format

Share Document