Kinetic and thermodynamic control of pseudobase formation from C-3 substituted 1-methylquinolinium cations

1984 ◽  
Vol 62 (7) ◽  
pp. 1301-1307 ◽  
Author(s):  
John W. Bunting ◽  
Norman P. Fitzgerald

The kinetic and thermodynamic control of pseudobase formation from 3-W-1-methylquinolinium cations has been studied for a variety of substituents (W). Spectral data indicate that, in both aqueous and methanolic solution, the C-2 pseudobases predominate at equilibrium for W = H and Br, while the C-4 pseudobases are the thermodynamically preferred species for W = CONH2, CO2CH3, CN, and NO2. Stopped-flow studies indicate that in all cases the C-2 pseudobases are the kineticallycontrolled products upon basification of the aqueous solutions of these cations. Equilibrium constants (pKR+) have been measured for pseudobase formation at both C-2 and C-4 for each W in all cases where they are experimentally accessible. Substituent effects upon [Formula: see text] correlate with σm for W, while [Formula: see text] depends upon σp−. These substituent effects allow the prediction of [Formula: see text] and [Formula: see text] for the 1-methylquinolinium cation. Rates of C-2 to C-4 pseudobase equilibration have been measured in all cases where the latter species is thermodynamically more stable. These kinetic data allow the evaluation of rate constants for C-4 pseudobase equilibration with each cation. In all cases except W = CN, C-2 pseudobase formation is complete within the mixing time of the stopped-flow instrument.

1983 ◽  
Vol 48 (5) ◽  
pp. 1401-1407 ◽  
Author(s):  
Františka Pavlíková-Raclová ◽  
Josef Kuthan

The rate constants k2 and equilibrium constants K = k2/k-2 of the title process (A) have been measured in aqueous solutions of eight quaternary salts of nicotinamide I (R = p-XC6H4CH2) at 298 K. The substituent effects of X = CH3O, CH3, H, F, Cl, COOCH3, CN, and NO2 exhibiting the Hammett dependence have been correlated with half-wave potentials of reduction of the depolarizers I, and the correlation results have been discussed with respect to mechanism of the reaction (A).


2003 ◽  
Vol 28 (1) ◽  
pp. 55-62 ◽  
Author(s):  
A. V. Rossi ◽  
M. Tubino

The kinetics and mechanism of the reactions between 4(2pyridylazo)-resorcinol and Zn2+, Cu2+ and Zn2++Cu2+ equimolar mixtures were studied. The reactions were performed in aqueous solution (pH = 8.5, borate buffer) and monitored spectrophotometrically at 500 nm using stopped-flow technique. Spectral and kinetic data indicate that the Zn2++Cu2+ equimolar mixture behaves as an unique species and it can be attributed to the interactions of Zn2+ and of Cu2+ with water molecules in the aqueous solution. A mechanism is proposed and the rate constants are calculated.


1993 ◽  
Vol 294 (1) ◽  
pp. 211-213 ◽  
Author(s):  
H B Brooks ◽  
V L Davidson

The most commonly used methods for analysis of stopped-flow kinetic data require performing a series of measurements in which one reactant is varied at concentrations significantly greater than the concentration of the other reactant. For enzyme-catalysed reactions this may not be possible, because the dissociation constants for the enzyme-substrate complex are often of the same order of magnitude as the high concentrations of enzyme that must frequently be used in stopped-flow studies. An alternative method of data analysis is presented which allows the determination of microscopic rate constants from initial rates of stopped-flow kinetic data in which substrate is varied in a range of concentrations approximately the same as the enzyme. This method also provides a simple and accurate method for determining k4, the rate of the reverse reaction. This method has been used to describe a physiological electron transfer reaction between a quinoprotein, methylamine dehydrogenase, and a copper protein, amicyanin. At 20 degrees C, the rate of the electron-transfer reaction from methylamine dehydrogenase to amicyanin was 24 s-1, and the dissociation constant for complex-formation was 1.9 microM.


1987 ◽  
Vol 33 (7) ◽  
pp. 1219-1222
Author(s):  
M H Kroll ◽  
A J Jackson ◽  
R J Elin

Abstract Cefoxitin interferes with determination of urinary 17-hydroxycorticosteroids. The apparent concentration of hormone is increased from three- to 10-fold in samples from patients receiving cefoxitin when the Amberlite XAD-2 "Clini-Skreen" column is used. To determine the mechanism of interference, we reacted aqueous solutions of cefoxitin, cortisol, cortisone, and 11-deoxycortisol with phenylhydrazine; recorded the adsorption spectra; and determined the molar absorptivities and the equilibrium and rate constants. Also, we recorded the absorption spectra of phenylhydrazine with eight other cepha antibiotics and benzylpenicillin. Cortisol, cortisone, 11-deoxycortisol, and cefoxitin react with phenylhydrazine and absorb light with superimposable spectra and absorption maxima of 410 nm. The other antibiotics react with phenylhydrazine but absorbance maxima of the products vary, none being at 410 nm. Cortisol, cortisone, and 11-deoxycortisol react with phenylhydrazine 35-fold faster, have equilibrium constants ninefold greater, and have molar absorptivities 1.6 times that of cefoxitin. Thus, cefoxitin interferes with determination of urinary 17-hydroxycorticosteroids by forming a chromophore with the same absorbance maximum and with a molar absorptivity similar to cortisol, but much more slowly.


1991 ◽  
Vol 56 (8) ◽  
pp. 1662-1670 ◽  
Author(s):  
Ivan Danihel ◽  
Falk Barnikol ◽  
Pavol Kristian

The reaction of para-substituted phenyl isocyanates with amines and alcohols was studied by stopped-flow method. The Hammett correlation obtained showed that the sensitivity of the above mentioned reactions toward substituent effects is the same as that of analogous reactions of phenyl isothiocyanates (ρ ~ 2). The rate constants of these reactions were found to be affected more by steric effects than by solvent effects. An one step multicentre mechanism with partial charges in transition state has been proposed for the title reactions.


2004 ◽  
Vol 08 (11) ◽  
pp. 1269-1275 ◽  
Author(s):  
Ahsan Habib ◽  
Masaaki Tabata ◽  
Ying Guang Wu

The kinetics of the reaction of the tetrakis(1-methylpyridium-4-yl)porphyrin tetracation, [ H 2( TMPyP )]4+, with gold(III) ions were studied along with equilibria of gold(III) species in aqueous medium at 25°C, I = 0.10 M ( NaNO 3). The equilibrium constants for the formation of [ AuCl 4-n( OH ) n ]- ( n = 0,…,4), defined as β n = [ AuCl 4- n ( OH ) n ]- [ Cl -] n / [ AuCl 4-][ OH -] n were found to be that log β1 = 7.94 ± 0.03, log β2 = 15.14 ± 0.03, log β3 = 21.30 ± 0.05 and log β4 = 26.88 ± 0.05. The overall reaction was first order with respect to each of the total [ Au (III)] and [ H 2 TMPyP 4+]. On the basis of pH dependence on rate constants and the hydrolysis of gold(III), the rate expression can be written as d [ Au ( TMPyP )5+]/ dt = ( k 1[ AuCl 4-] + k2[ AuCl 3( OH )-] + k3[ AuCl 2( OH )2-] + k4[ AuCl ( OH )3-])[ H 2 TMPyP 4+], where k1, k2, k3 and k4 were found to be (2.16 ± 0.31) × 10-1, (6.56 ± 0.19) × 10-1, (1.07 ± 0.24) × 10-1, and (0.29 ± 0.21) × 10-1 M -1. s -1, respectively. The kinetic data revealed that the trichloromonohydroxogold(III) species, [ AuCl 3( OH )]-, is the most reactive. The higher reactivity of [ AuCl 3( OH )]- is explained by hydrogen bonding formation between the hydroxyl group of [ AuCl 3( OH )]- and the pyrrole hydrogen atom of [ H 2( TMPyP )]4+. Furthermore, applying the Fuoss equation to the observed rate constants at different ionic strengths, the apparent net charge of [ H 2( TMPyP )]4+ was calculated to be +3.5.


1990 ◽  
Vol 68 (10) ◽  
pp. 1762-1768 ◽  
Author(s):  
John W. Bunting ◽  
Cynthia Fu ◽  
James W. Tam

The reaction of acetone with four heteroaromatic cations (10-methylacridinium (1), 3-aminocarbonyl-1-methylquinolinium (2a), 3-cyano-1-methylquinolinium (2b), and 3-bromo-1-methylquinolinium (2c)) has been investigated in basic aqueous solutions (pH 9–12, ionic strength 0.1, 25 °C). For each of 2a and 2b, the kinetically controlled product is a 35:65 mixture of the C-2 and C-4 enolate ion adducts; the C-2 adduct subsequently isomerizes to give the C-4 adduct as the only observable species under thermodynamic control. For 2c, the C-2 enolate adduct appears to be favoured both kinetically and thermodynamically. Under kinetic control, the pH-dependence of adduct formation from each cation is consistent with rate-determining attack of the enolate ion upon the heterocyclic cation. Comparisons of regiochemical control of acetone enolate ion attack with hydroxide ion attack upon these same cations indicate that acetone enolate ion shows a more pronounced preference for C-4 attack over C-2 attack than does hydroxide ion. The thermodynamically controlled regiochemistry is similar for each of these two nucleophiles. Keywords: nucleophilic addition, regioselectivity, kinetic control, thermodynamic control, quinolinium cations.


Sign in / Sign up

Export Citation Format

Share Document