Mechanism of the oxidation of triphenyl derivatives of P, As, and Sb by peroxodiphosphate

1985 ◽  
Vol 63 (8) ◽  
pp. 2285-2289 ◽  
Author(s):  
C. Srinivasan ◽  
K. Pitchumani

Rate coefficients have been determined for the oxidation of Ph3M (M = P, As, Sb) by potassium peroxodiphosphate. The reaction is found to follow second-order kinetics, first order in each in the oxidant and Ph3M. [H+] has a pronounced accelerating effect on the reaction rate. An interesting dependence of the active species on the nature of the substrate has been observed. The reaction rate is influenced by changing the ionic strength of the medium. Acrylonitrile has no effect on the rate of oxidation. On the basis of the kinetic evidence, a general mechanism involving a biomolecular nucleophilic displacement of the substrate on the peroxo ion has been proposed. The relative rate order is found to be Ph3P > Ph3Sb > Ph3As and an explanation has been offered for the transposition of Ph3Sb and Ph3As.

1977 ◽  
Vol 55 (17) ◽  
pp. 3166-3171 ◽  
Author(s):  
Thomas Wilson Swaddle

For the aquation of (CH3NH2)5RhCl2+, the first order rate coefficients are represented by ΔHaq* = 101.9 kJ mol−1 and ΔSaq* = −50.2 JK−1 mol−1 in 0.1 M HClO4, while for base hydrolysis the rate is first order in [(CH3NH2)5RhCl2+] and [OH−] at ionic strength 0.10 M and the rate coefficients (in M−1 s−1) are represented by ΔHOH*> = 108.6 kJ mol−1 and ΔSOH* = 74.1 J K−1 mol−1. Acid dissociation constants are reported for (RNH2)5MOH23+ (R = H or CH3; M = Rh or Co), and these, combined with spectral data, show CH3NH2 to be a poorer electron donor than NH3 in complexes of this type, contrary to expectations. The comparative kinetics of reactions of (RNH2)5MCl2+ support the assignment of an Ia mechanism to aquation when M = Rh or Cr, Id to aquation when M = Co, and Dcb for base hydrolysis in all these cases.


1996 ◽  
Vol 34 (9) ◽  
pp. 41-48 ◽  
Author(s):  
Jih-Gaw Lin ◽  
Cheng-Nan Chang ◽  
Jer-Ren Wu ◽  
Ying-Shih Ma

We investigated the effects of pH, ionic strength, catalyst, and initial concentration on both decomposition of 2-chlorophenol (2-cp) and removal of total organic carbon (TOC) in aqueous solution with ultrasonic amplitude 120 μm and H2O2 (200 mg/l). When the initial concentrations of 2-cp was 100 mg/l and the pH was controlled at 3, the rate of 2-cp decomposition was enhanced up to 6.6-fold and TOC removal up to 9.8-fold over pH controlled at 11. At pH 3, the efficiency of decomposition of 2-cp was 99% but the removal of TOC was only 63%; a similar situation applied at pH 7 and 11. Hence intermediate compounds were produced and 2-cp was not completely mineralized. When the concentration of ionic strength was increased from 0.001 to 0.1 M, the rate of 2-cp decomposition was enhanced only 0.3-fold, whereas the TOC removal was not enhanced. In comparison of the effects of pH and ionic strength, pH had greater influence on both 2-cp decomposition and TOC removal than ionic strength. The effect of a catalyst (FeSO4) on decomposition of 2-cp was insignificant comparing with direct addition of H2O2. The reaction rate at a smaller initial concentration of 2-cp (10 mg/l) was more rapid than at a greater one (100 mg/l). The rate of 2-cp decomposition and TOC removal appeared to follow pseudo-first-order reaction kinetics.


1984 ◽  
Vol 62 (4) ◽  
pp. 729-735 ◽  
Author(s):  
John W. Bunting ◽  
Glenn M. Kauffman

The kinetics of disproportionation and ferricyanide ion oxidation of the 10-methylacridinium cation have been measured spectrophotometrically over the pH range 9–14 in.20% CH3CN – 80% H2O (v/v) and ionic strength 1.0 at 25 °C. Disproportionation is kinetically second-order in total acridine species. The pH–rate profile is consistent with the rate-determining reaction of one acridinium cation with the pseudobase alkoxide anion derived from a second acridinium cation. Ferricyanide ion oxidation is kinetically first-order in each of ferricyanide ion and total acridine species. The pH–rate profile requires three distinct pathways for the ferricyanide ion oxidation of the 10-methylacridinium cation. For pH < 9.7, rate-determining attack of ferricyanide ion on the neutral pseudobase predominates, while for pH > 12.8 the predominant oxidation pathway involves reaction of ferricyanide ion with the pseudobase alkoxide ion. Between pH 9.7 and 12.8, the major oxidation pathway involves initial disproportionation of the acridinium cation followed by ferricyanide ion oxidation of the 9,10-dihydro-10-methylacridine product. This latter route accounts for a maximum of 69% of the total ferricyanide ion oxidation at pH 11.1.


2011 ◽  
Vol 11 (21) ◽  
pp. 10837-10851 ◽  
Author(s):  
R. K. Talukdar ◽  
L. Zhu ◽  
K. J. Feierabend ◽  
J. B. Burkholder

Abstract. Rate coefficients, k, for the gas-phase reaction of CH3COCHO (methylglyoxal) with the OH and NO3 radicals and (CHO)2 (glyoxal) with the NO3 radical are reported. Rate coefficients for the OH + CH3COCHO (k1) reaction were measured under pseudo-first-order conditions in OH as a function of temperature (211–373 K) and pressure (100–220 Torr, He and N2 bath gases) using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to measure its temporal profile. k1 was found to be independent of the bath gas pressure with k1(295 K) = (1.29 ± 0.13) × 10−11 cm3 molecule−1 s−1 and a temperature dependence that is well represented by the Arrhenius expression k1(T) = (1.74 ± 0.20) × 10−12 exp[(590 ± 40)/T] cm3 molecule−1 s−1 where the uncertainties are 2σ and include estimated systematic errors. Rate coefficients for the NO3 + (CHO)2 (k3) and NO3 + CH3COCHO (k4) reactions were measured using a relative rate technique to be k3(296 K) = (4.0 ± 1.0) × 10−16 cm3 molecule−1 s−1 and k4(296 K) = (5.1 ± 2.1) × 10−16 cm3 molecule−1 s−1. k3(T) was also measured using an absolute rate coefficient method under pseudo-first-order conditions at 296 and 353 K to be (4.2 ± 0.8) × 10−16 and (7.9 ± 3.6) × 10−16 cm3 molecule−1 s−1, respectively, in agreement with the relative rate result obtained at room temperature. The atmospheric implications of the OH and NO3 reaction rate coefficients measured in this work are discussed.


2004 ◽  
Vol 467-470 ◽  
pp. 1111-1116 ◽  
Author(s):  
Lasar S. Shvindlerman ◽  
Günter Gottstein ◽  
Anthony D. Rollett

We present a new analysis of the relative rate of growth or shrinkage of grains in a two-dimensional network, based on the classical Von Neumann-Mullins (VN-M) analysis. We find that an analysis of the stability of the grain shape during shrinkage or growth shows that any change in the regular 2D grain leads to changes in the shape. We also re-examine a recent analysis that claims to have invalidated the VN-M relationship, but find that it is still valid, and that the cited analysis, in fact, confused a second order correction with a first order problem, partly because their derivation was in error. The erroneous magnitude of the discrepancy led them to use unphysical issues to explain the discrepancy. The way in which the curvature is distributed along the perimeter of a grain only gives rise only to second order corrections to the rate of change of area as a function of grain topology (number of sides).


Sign in / Sign up

Export Citation Format

Share Document