Remarks on the barrier to rotation about the Csp2—O bond in anisole

1989 ◽  
Vol 67 (7) ◽  
pp. 1148-1152 ◽  
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian

Molecular orbital computations with the basis set 6-31G are reported for seven values of θ, the torsion angle about the [Formula: see text] bond in anisole. All bond angles and lengths are optimized but the atoms of the phenyl group are constrained to a plane. The relative energies are fit by V(θ)/kJ mol−1 = 7.78(5) sin2θ + 2.41(5) sin2 2θ − 0.54(5) sin2 3θ, where θ is zero when the heavy-atom skeleton is planar. Computations with the basis set 6-31G*(5D) for three values of θ can be reproduced by V(θ)/kJ mol−1 = 6.07 sin2θ + 2.68 sin2 2θ. These results are compared with experimental gas phase data from the literature. The analysis of the 1H nuclear magnetic resonance spectrum of anisole-α-13C in aCS2/C6D12/TMS solvent mixture yields a value of 6J(1H, 13C), the long-range spin-spin coupling constant between the 13C nucleus in the methyl group and thepara proton. Because this coupling constant is proportional to sin2 θ, it is shown, together with previous dynamic nmr measurements, that the barrier to rotation about the [Formula: see text] bond in solution cannot be purely twofold. The internal potential must also contain a fourfold term of the same sign as that of the twofold component. If the V2/V4 ratio given by the various molecular orbital computations holds in solution, then V2 is 15.0 ± 2.0 kJ/mol and V4 is 5.6 ± 2.2 kj/mol. The apparent doubling of the internal barrier in solution is perhaps unprecedented for such a simple molecule. Keywords: anisole, internal barrier in solution, anisole-α-13C, 1H NMR, conformational behaviour, MO computations.

1995 ◽  
Vol 73 (9) ◽  
pp. 1478-1487 ◽  
Author(s):  
Ted Schaefer ◽  
Scott Kroeker ◽  
David M. McKinnon

The 1H nuclear magnetic resonance spectra of phenylallene, diluted in acetone-d6 and benzene-d6, yield long-range coupling constants over as many as eight formal bonds between the ring and side-chain protons. These are discussed in terms of σ- and π-electron spin–spin coupling mechanisms, which are sensitive to the torsion angle between the allenyl and phenyl fragments. The torsion angle is assessed by means of molecular orbital computations of the internal rotational potential, whose height is calculated as 16.0 kJ/mol at the MP2/6-31G* level of correlation-gradient theory. Comparison with experimental and theoretical internal rotational potentials for styrene suggests that steric repulsions in the planar form of styrene amount to about 4 kJ/mol. In a field of 7.0 T, phenylallene is partially aligned, entailing a positive dipolar coupling constant between the methylene protons, from which absolute signs of the spin–spin coupling constants involving these protons can be inferred. Such coupling constants over seven and eight bonds, to the meta and para protons, are taken as being mediated by the extended π-electron system, providing a measure of π-electron contributions to coupling constants between meta protons and those in side chains (spin correlation). Some coupling constants between protons and 13C nuclei in the side chain, as well as between ring protons and these 13C nuclei, are also discussed in terms of spin coupling mechanisms. Solvent perturbations of one-bond proton–carbon coupling constants in the allenyl group do not follow the usual pattern in which an increase in polarity of the solvent is associated with an increase in the magnitude of the coupling constant. Keywords: 1H NMR, phenylallene; 1H NMR, long-range spin–spin coupling constants in phenylallene; phenylallene, internal rotational potential, molecular orbital computations; molecular orbital calculations, an internal rotational potential in phenylallene.


1991 ◽  
Vol 69 (6) ◽  
pp. 927-933 ◽  
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian ◽  
Christian Beaulieu

The inversion potentials, obtained from STO-3G, STO-3G(*), 3-21G, 3-21G(*), and 4-31G basis sets, are reported for thianthrene and thioxanthene, molecules in which both or only one of the methylene groups have been replaced by sulfur in 9,10-dihydroanthracene. Comparison with the available experimental data suggests that the split-valence bases lead to an overestimate, possibly by about 10 kJ/mol, of the inversion barrier in the crystal, whereas the STO-3G and STO-3G* basis sets underestimate this barrier. It appears that the inversion barrier for thianthrene is much lower in solution than in the crystal. The long-range coupling constants between the methylene and ring protons for thioxanthene in solution are consistent with an inversion barrier somewhat smaller than those obtained with the split-valence bases but rather larger than those predicted with the STO-3G basis set. The bond lengths and angles in the equilibrium structures of the two molecules, as computed with the 3-21G(*) basis, agree reasonably well with those in their crystals, except that the theoretical folding angles are smaller than measured. These discrepancies become less marked when expectation values are calculated from the theoretical inversion potentials at finite temperatures. Key words: MO calculations, inversion potentials of thianthrene and thioxanthene; 1H NMR, thioxanthene; spin–spin coupling constants, long range, in thioxanthene.


1990 ◽  
Vol 68 (4) ◽  
pp. 581-586 ◽  
Author(s):  
Ted Schaefer ◽  
Christian Beaulieu ◽  
Rudy Sebastian ◽  
Glenn H. Penner

The twofold barrier to rotation about the [Formula: see text] bond in benzyl fluoride is deduced from the long-range 1H,1H; 1H,19F; and 13C,19F nuclear spin–spin coupling constants in solution. The barrier changes from 3.2(2) kJ/mol in the polar solvent, acetonitrile-d3, to 0.7(2) kJ/mol in the nonpolar environment provided by cyclohexane-d12. In all solutions the conformer of greatest stability has the C—F bond in a plane perpendicular to that of the phenyl group. Extrapolation of the barrier to the vapor phase, using a simple reaction field model, indicates that the most stable conformer for the free (unclustered) molecule is now that with the C—F bond in the phenyl plane and that the barrier to internal rotation is 1.1(7) kJ/mol. Molecular orbital calculations with the basis sets STO-3G, 4-21G, 4-31G, 6-31G, and 6-31G* all predict the latter conformer as that of lowest energy. However, they disagree significantly among themselves as to the height of the internal barrier. The complete geometries are given for both conformers, as computed with the 6-31G basis, and the side-chain geometries are tabulated for the planar and perpendicular conformers, as given by all the bases. Keywords: benzyl fluoride, internal rotational potential; 13C,19F spin–spin coupling constants in benzyl fluoride; benzyl fluoride, molecular orbital computations.


1983 ◽  
Vol 61 (2) ◽  
pp. 224-229 ◽  
Author(s):  
Ted Schaefer ◽  
Reino Laatikainen

A precise analysis of the 1H nmr spectrum of 1,2-dimethoxybenzene in benzene solution yields an accurate value for the proximate spin–spin coupling constant, [Formula: see text], between the ortho ring proton and the methyl protons. The latter also couple to other ring protons and these couplings are assessed. Comparison with some values in other anisole derivatives and with a variety of INDO MO FPT calculations of [Formula: see text] strongly implies the predominance of a planar conformation in solution. This implication disagrees with the interpretation of some other experimental and theoretical data. The mechanism of this proximate coupling is examined by the procedure of Barfield. It seems that the magnitude of the coupling is dominated by interactions involving the orbitals on the carbon atom of the methyl group.


Author(s):  
Dora G. de Kowalewski ◽  
Valdemar J. Kowalewski ◽  
Juan E. Peralta ◽  
Gernot Eskuche ◽  
Rubén H. Contreras ◽  
...  

1965 ◽  
Vol 38 (7) ◽  
pp. 1224-1224 ◽  
Author(s):  
Teijiro Yonezawa ◽  
Isao Morishima ◽  
Mutsuo Fujii ◽  
Kenichi Fukui

1986 ◽  
Vol 64 (7) ◽  
pp. 1326-1331 ◽  
Author(s):  
Ted Schaefer ◽  
James D. Baleja

Conformations about the Csp2—S bond in thioanisole and eight of its derivatives in solution are investigated by means of long-range spin–spin coupling constants over six bonds between the sidechain 13C nucleus and the para ring proton or 19F nucleus. According to geometry optimized STO 3G MO calculations the internal barrier to rotation is predominantly twofold in the gas phase in thioanisole and is 6.2 kJ/mol. In benzene solution the coupling constant yields 5.5(4) kJ/mol. Para fluorine and methyl substituents reduce the magnitude of the internal barrier, but meta methyl or chlorine substituents cause significant increases. In the presence of two ortho fluorine substituents the conformation of lowest energy has the C—S bond in a plane perpendicular to the aromatic plane, but die barrier may now contain a fourfold component. Addition of further fluorine substituents in the meta or para positions causes characteristic changes in conformational preferences of the thiomethyl group.


Sign in / Sign up

Export Citation Format

Share Document