Separation of metal-cyanide complexes by reversed-phase ion-interaction high-performance liquid chromatography

1994 ◽  
Vol 72 (2) ◽  
pp. 269-273 ◽  
Author(s):  
Louis Giroux ◽  
Dwight J. Barkley

Reversed-phase ion-interaction chromatography has been used to study the separation of Cu(I), Ag(I), Ni(II), Au(I), Co(III), Fe(III), and Fe(II) cyano complexes on silica and carbon-based reversed-phases with UV detection at 215 nm. Separation of the metal-cyanide complexes was affected by a number of experimental factors including the nature and concentration of the organic modifier, nature and concentration of the ion-pairing reagent, pH, and ionic strength of the mobile phase. Differences between the elution order of metallo-cyanides observed in the present work and in other investigations under similar experimental conditions are explained by a difference in the ionic strength of the mobile phase. Finally, this technique is used to analyze metal-cyanide complexes in a gold mill solution.


Proceedings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Iva Kapustikova ◽  
Tomas Gonec ◽  
Jiri Kos ◽  
Ewelina Spaczynska ◽  
Michal Oravec ◽  
...  

A series of variously methoxylated and methylated N-aryl-1-hydroxynaphthalene-2-carboxanilides was prepared and characterized as potential anti-invasive agents. As it is known that lipophilicity significantly influences the biological activity of compounds, the hydro-lipophilic properties of these mono-, di- and tri-substituted 1-hydroxynaphthalene-2-carboxanilides are investigated in the study. All the discussed hydroxynaphthalene derivatives were analyzed using the reversed-phase, high-performance liquid chromatography method, to measure lipophilicity. The procedure was performed under isocratic conditions with methanol as an organic modifier in the mobile phase, using an end-capped, non-polar C18 stationary reversed-phase column. The present study discusses the correlations between the logarithm of the capacity factor k and log P/Clog P values, calculated in various ways, as well as the relationships between the lipophilicity and the chemical structure of the studied compounds.



1987 ◽  
Vol 247 (1) ◽  
pp. 229-232 ◽  
Author(s):  
C K Lim ◽  
F Li ◽  
T J Peters

A reversed-phase h.p.l.c. system is described for the separation of the four type-III heptacarboxylic porphyrinogen isomers. The effects of buffer concentration, pH and type and proportion of organic modifier in the mobile phase on retention and resolution of isomers were studied. Optimum separation on an ODS-Hypersil column was by elution with a ternary mobile phase of acetonitrile, methanol and 1 M-ammonium acetate, pH 5.16 (7:3:90, by vol.). Isomer identification was based on a comparison of their retention times with those of authentic standards, and was further confirmed by h.p.l.c. analysis of the characteristic mixture of three pentacarboxylic porphyrins formed after partial decarboxylation of individual isomers in 0.3 M-HCl at 160 degrees C.



1994 ◽  
Vol 59 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Josef Královský ◽  
Marta Kalhousová ◽  
Petr Šlosar

The reversed-phase high-performance liquid chromatography of some selected, industrially important aromatic sulfones has been investigated. The chromatographic behaviour of three groups of aromatic sulfones has been studied. The optimum conditions of separation and UV spectra of the sulfones and some of their hydroxy and benzyloxy derivatives are presented. The dependences of capacity factors vs methanol content in mobile phase are mentioned. The results obtained have been applied to the quantitative analysis of different technical-grade samples and isomer mixtures. For all the separation methods mentioned the concentration ranges of linear calibration curves have been determined.



1977 ◽  
Vol 23 (12) ◽  
pp. 2288-2291 ◽  
Author(s):  
P H Culbreth ◽  
I W Duncan ◽  
C A Burtis

Abstract We used paired-ion high-performance liquid chromatography to determine the 4-nitrophenol content of 4-nitrophenyl phosphate, a substrate for alkaline phosphatase analysis. This was done on a reversed-phase column with a mobile phase of methanol/water, 45/55 by vol, containing 3 ml of tetrabutylammonium phosphate reagent per 200 ml of solvent. At a flow rate of 1 ml/min, 4-nitrophenol was eluted at 9 min and monitored at 404 nm; 4-nitrophenyl phosphate was eluted at 5 min and could be monitored at 311 nm. Samples of 4-nitrophenyl phosphate obtained from several sources contained 0.3 to 7.8 mole of 4-nitrophenol per mole of 4-nitrophenyl phosphate.



2011 ◽  
Vol 8 (1) ◽  
pp. 340-346 ◽  
Author(s):  
Rajesh M. Kashid ◽  
Santosh G. Singh ◽  
Shrawan Singh

A reversed phase HPLC method that allows the separation and simultaneous determination of the preservatives methyl paraben (M.P.) and propyl paraben (P.P.) is described. The separations were effected by using an initial mobile phase of water: acetonitrile (50:50) on Inertsil C18 to elute P.P. and M.P. The detector wavelength was set at 205 nm. Under these conditions, separation of the two components was achieved in less than 10 min. Analytical characteristics of the separation such as precision, specificity, linear range and reproducibility were evaluated. The developed method was applied for the determination of preservative M.P. and P.P. at concentration of 0.01 mg/mL and 0.1 mg/mL respectively. The method was successfully used for determining both compounds in sucralfate suspension.



2001 ◽  
Vol 73 (9) ◽  
pp. 1465-1475 ◽  
Author(s):  
Roman Kaliszan ◽  
Piotr Haber ◽  
Tomasz Baczek ◽  
Danuta Siluk

The linear-solvent strength (LSS) model of gradient elution in high-performance liquid chromatography (HPLC) has been demonstrated to provide parameters of lipophilicity and acidity of analytes. pKa and log kw values are determined in three gradient runs. The first two experiments use an aqueous buffered eluent with a wide-range organic modifier gradient at pH of buffer, providing suppression of ionization of the analyte. That experiment allows an estimate of contents of the organic modifier in the mobile phase (%B), producing requested retention coefficient, k, for the nonionized form of the analyte. The next experiment is carried out with the latter %B and a pH-gradient of the aqueous component of the eluent that is sufficient to overlap possible pKa value of the analyte. The initial pH of the buffer used to make the mobile phase is selected to insure that the analyte is in nonionized form. The resulting retention time allows an estimate of pKa in a solvent of the given %B.The log kw parameter obtained correlated well with the corresponding value obtained by the standard procedure of extrapolation of retention data determined in a series of isocratic measurements. The correlation between log kw and the reference parameter of lipophilicity, log P, was very good for a series of test analytes. The values of pKa were found to correlate with the literature pKa data determined in water for a set of aniline derivatives studied.



INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (07) ◽  
pp. 59-68
Author(s):  
H Mahajan ◽  
S Savale ◽  
P Nerkar ◽  

The present study was aimed at developing a Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) method for simultaneous determination of curcumin (CRM) and gefitinib (GFT) in bulk, plasma and brain homogenate. hydrochlorothiazide was used as an internal standard (IS). A new simple, rapid, selective, precise and accurate RP-HPLC method has been developed. The separation was achieved by using C-18 column (Qualisil BDS C18, 250 mm x 4.6 mm I.D.) coupled with a guard column of silica, mobile phase consisted of acetonitrile: water with 0.1% formic acid (30:70 v/v). The flow rate was 0.2 ml/min and the drug was detected using PDA detector at the wavelength of 242 nm. The experimental conditions, including the diluting solvent, mobile phase composition, column saturation and flow rate, were optimised to provide high-resolution and reproducible peaks. The method was developed and tested for linearity range of 10-60 μg/mL for bulk analysis and 200-800 ng/mL for plasma and brain homogenate. The developed method was validated as per ICH guidelines, in terms of linearity, application of the proposed method to bulk sample, recovery, precision, repeatability, ruggedness, sensitivity (LOD and LOQ) and robustness and stability study (short and long-term stabilities, freeze/thaw stability, post-preparative). The low value of % RSD showed that the method was precise within the acceptance limit of 2%. The developed method was successfully applied for the analysis of the drug in bulk as well as various marketed formulation and drug in plasma and brain distribution studies.



Sign in / Sign up

Export Citation Format

Share Document