On the synthesis and the mechanism of formation of halogenated enol lactones

1997 ◽  
Vol 75 (10) ◽  
pp. 1322-1330 ◽  
Author(s):  
Margaret M. Kayser ◽  
Jun Zhu ◽  
Donald L. Hooper

The synthesis of halo enol lactones from cyclic anhydrides via lactonization of the corresponding keto phosphoranes provides a direct route to these interesting compounds, which possess important biological properties and are useful intermediates in organic synthesis. In this paper we outline the syntheses of several halo enol lactones and discuss mechanistic consequences of these reactions on the understanding of Wittig reactions with cyclic anhydrides. Keywords: halolactonization, cyclic anhydrides, halo enol lactones, Wittig reaction mechanism.


1989 ◽  
Vol 67 (9) ◽  
pp. 1401-1410 ◽  
Author(s):  
Margaret M. Kayser ◽  
Livain Breau

Phosphorane ylids react readily with succinic anhydrides to give enol-lactones. With highly substituted succinic anhydrides, condensations occur at the less substituted carbonyl group, suggesting that the reaction is sterically controlled. This, however, is not the case in monosubstituted anhydrides where effects other than steric become dominant. Condensation of phosphorane 1a with methoxysuccinic anhydride occurs selectively at the carbonyl group adjacent to the substituent. Stabilization of the transition state through complexation between the oxygen atom of the substituent and an electron-deficient phosphorus of the ylid is proposed. Keywords: cyclic anhydrides, Wittig reaction, regioselectivity, stabilized ylid.



Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1651
Author(s):  
Felipe de la Cruz-Martínez ◽  
Marc Martínez de Sarasa Buchaca ◽  
Almudena del Campo-Balguerías ◽  
Juan Fernández-Baeza ◽  
Luis F. Sánchez-Barba ◽  
...  

The catalytic activity and high selectivity reported by bimetallic heteroscorpionate acetate zinc complexes in ring-opening copolymerization (ROCOP) reactions involving CO2 as substrate encouraged us to expand their use as catalysts for ROCOP of cyclohexene oxide (CHO) and cyclic anhydrides. Among the catalysts tested for the ROCOP of CHO and phthalic anhydride at different reaction conditions, the most active catalytic system was the combination of complex 3 with bis(triphenylphosphine)iminium as cocatalyst in toluene at 80 °C. Once the optimal catalytic system was determined, the scope in terms of other cyclic anhydrides was broadened. The catalytic system was capable of copolymerizing selectively and efficiently CHO with phthalic, maleic, succinic and naphthalic anhydrides to afford the corresponding polyester materials. The polyesters obtained were characterized by spectroscopic, spectrometric, and calorimetric techniques. Finally, the reaction mechanism of the catalytic system was proposed based on stoichiometric reactions.



Synlett ◽  
2019 ◽  
Vol 30 (03) ◽  
pp. 338-342
Author(s):  
Yuta Suganuma ◽  
Shun Saito ◽  
Yuichi Kobayashi

Wittig reactions using carboxy (CO2H) ylides derived from a carboxylic phosphonium salt and NaN(TMS)2 (NaHMDS) in a 1:1 ratio were applied to the synthesis of 8-HEPE and 10-HDoHE, which are metabolites of eicosapentaenoic acid and docosahexaenoic acid, respectively. The attempted Wittig reaction of 3-(TBS-oxy)pentadeca-4E,6Z,9Z,12Z-tetraenal with the carboxy ylide (2 equiv) derived from Br– Ph3P+(CH2)4CO2H and NaHMDS (1:1) competed with the elimination of the TBS-oxy group at C3 to give a mixture of the Wittig product and the elimination product in 45–50% and 30–40% yields, respectively. The elimination was suppressed completely by using three equiv of the carboxy ylides in THF/HMPA (7–8:1), and the subsequent desilylation gave 8-HEPE in (R)- and (S)-forms. Similarly, both enantiomers of 10-HDoHE were synthesized.



1998 ◽  
Vol 76 (12) ◽  
pp. 1844-1852
Author(s):  
Fernande D Rochon ◽  
Robert Melanson ◽  
Margaret M Kayser

At lower temperatures stabilized ylides react with unsymmetrically substituted phthalic anhydrides to give two acyclic adducts. When the reactions are allowed to proceed at higher temperature enol lactones are formed. Identification of the acyclic intermediates was necessary to understand the mechanism of these Wittig reactions. The transient species trapped in the reaction with trimethyloxonium tetrafluoroborate were unambiguously identified by crystallographic methods. The crystal structures of the tetrafluoroborate salt of methyl(triphenylphosphoranyl idene)- acetate (8), methyl(3-methoxy,2-methoxycarbonylbenzoyl)triphenylphosphoranylideneacetate (6β), and methyl(2-methoxycarbonyl,6-nitrobenzoyl)triphenylphosphoranylideneacetate (7α) were studied by X-ray diffraction. The ionic salt (8) is monoclinic, P21c,a= 12.640(5), b = 13.945(9), c = 14.825(6) Å, β = 125.32(3)°, Z = 4, and R = 0.065 (F >5.4 σ(F)). Crystal 6 β is monoclinic, P21c,a = 16.391(16), b = 9.029(6), c = 19.835(19) Å, β = 116.60(6)°, Z = 4, and R = 0.070 (F > 4.6 σ(F)), while crystal 7α is also monoclinic, P21c,a = 9.513(5), b = 9.361(3), c = 30.908(13) Å, β = 98.42(3)°, Z = 4, and R = 0.057 (F >5 σ(F)). In the BF 4- salt (12), the four P-C distances are equal (1.791(5)-1.801(7) Å) with identical tetrahedral angles. For the two triphenylphosphoranylideneacetate compounds, the fourth P-C(1) bond is shorter (1.762(6)-1.734(5) Å) than the three P-C(Ph) bonds (avg. 1.809(5) Å). The angles C(1)-P-C(Ph) are also larger (avg. 112.9(2)° for 6β and 111.9(2)° for 7α) than the C(Ph)-P-C(Ph) angles (avg. 105.8(2)° for 6 β and 106.9(2)° for 7α). These values suggest a multiple nature for the P-C(1) bond. In the nitro derivative, the nitro and the ester groups are disordered equally in positions 2 and 6. Key words: Wittig reactions, cyclic anhydrides, stabilized ylide, phosphoranylidenes, crystal structures.



1965 ◽  
Vol 43 (5) ◽  
pp. 1614-1624 ◽  
Author(s):  
J. G. Atkinson ◽  
M. H. Fisher ◽  
D. Horley ◽  
A. T. Morse ◽  
R. S. Stuart ◽  
...  

A new application of the Wittig reaction to the preparation of olefins of low molecular weight which allows selective labelling in the vinyl or allyl positions with isotopes of hydrogen and carbon has been developed. Using the modification of the Wittig reaction introduced by E. J. Corey, in which a solution of the methylsulfinyl carbanion in dimethyl sulfoxide serves as the base, a series of olefins from C2 to C8 were synthesized. The synthesis was applied to the preparation of the following labelled compounds: 5-methylene-14C-bicyclo[2.2.1]hept-2-ene; propene-1-14C; 1-butene-1-14C; propene-1-d1; 2-methylpropene-1,1-d2; 2-methyl-d3-propene-3,3,3-d3; 2-methyl-2-butene-4,4,4-d3; 2-methyl-d3-2-butene-1,1,1-d3; methylene-d2-cyclohexane. For the synthesis of carbon-labelled olefins the reaction has few limitations since the intermediates and products are isotopically stable under the reaction conditions. Deuterium-labelled olefins can be obtained from deuterated formaldehyde or β-deuterated phosphonium salts, but α-deuteroketones and aldehydes and α-deuterophosphonium salts lose the isotope to the solvent.In all the Wittig reactions, benzene was formed as a by-product in 10–15% yield. The mechanism of benzene formation is probably analogous to that proposed by Seyferth involving the decomposition of a pentacovalent phosphorous intermediate.



2021 ◽  
Vol 25 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Javadi ◽  
Fatemeh Mohajer

: The role of oxindole derivatives is discussed as starting materials in diverse organic reactions including two and more components between the years 2014 until 2020. Oxindoles are famous because of their biological properties for instance chromanone-fused polycyclic pyrrolidinyl-dispirooxindoles, functionalized polycyclic spiro-fused carbocyclicoxindole, and 3,3-disubstituted oxindoles have anti-cancer, anti-tumor, and anti-microbial properties, respectively. Therefore, various methods for synthesizing the oxindole structures have received more attention in organic chemistry.



RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 34319-34326 ◽  
Author(s):  
Lianyang Zhang ◽  
Junhui Jiang ◽  
Wei Shi ◽  
Shengjie Xia ◽  
Zheming Ni ◽  
...  

The hydrogenation mechanism of nitrobenzene to aniline on Pd3/Pt(111) surface preferentially follows the direct route and fits best the Jackson reaction mechanism (mechanism B).



ChemInform ◽  
2010 ◽  
Vol 23 (34) ◽  
pp. no-no
Author(s):  
R. A. O'BRIEN ◽  
J. J. WORMAN ◽  
E. S. OLSON


RSC Advances ◽  
2013 ◽  
Vol 3 (11) ◽  
pp. 3683 ◽  
Author(s):  
Vivien Stocker ◽  
Alina Ghinet ◽  
Marie Leman ◽  
Benoît Rigo ◽  
Régis Millet ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document