Optimizing the expression of a monoclonal antibody fragment under the transcriptional control of the Escherichia coli lac promoter

2000 ◽  
Vol 46 (6) ◽  
pp. 532-541 ◽  
Author(s):  
Robert S Donovan ◽  
Campbell W Robinson ◽  
Bernard R Glick

The expression of a monoclonal antibody Fab fragment in Escherichia coli strain RB791/pComb3, induced with either lactose or isopropyl-beta-D-thiogalactoside (IPTG), was compared to determine if lactose might provide an inexpensive alternative to induction with IPTG. Induction of Fab expression imposed a metabolic load on the recombinant cells, resulting in lower final cell yields compared to the non-induced controls. An IPTG concentration of 0.05 mM was sufficient to achieve maximal expression of soluble Fab protein when inducing in the early-, mid-, or late-log phases of batch cultures grown using either glucose or glycerol as a carbon source. The largest overall yield of Fab fragments when using 0.05 mM IPTG was achieved by increasing the final yield of cells through glycerol feeding following induction in late-log phase. Lactose was as effective as IPTG for inducing Fab expression in E. coli RB791/pComb3. The greatest overall level of Fab expression was found when cells grown on glycerol were induced with 2 g/L lactose in late-log phase. Since the cost of 0.05 mM of IPTG is significantly greater than the cost of 2 g/L lactose, lactose provides an inexpensive alternative to IPTG for inducing the expression of Fab fragments, and possibly other recombinant proteins, from the E. coli lac promoter.

2010 ◽  
Vol 93 (1) ◽  
pp. 80-88 ◽  
Author(s):  
Julia C Wiebe ◽  
Carolin Schüller ◽  
Jana A Reiche ◽  
Karl Kramer ◽  
Arne Skerra ◽  
...  

Abstract A mutually compatible vector system was developed for the bench-top fermenter production of mouse and rabbit Fab fragments comprising pASK85-pro-K411B and pASK85Rab-pro-WR13. These vectors provide a mouse- and rabbit-specific cloning site, respectively, the tetA promoter/operator and the proBA operon that complements the Pro biosynthetic deficiency of the Escherichia coli strain JM83 and can serve as an additional selection marker. Fermentation at elevated cell density (OD600 = 2040) of the atrazine-specific mouse Fab fragment K411B using JM83 harboring pASK85-pro-K411B in a 2 L bench-top vessel resulted in a yield of 240 g/L OD600 affinity-purified protein (13.8 mg). In contrast, expression of leporid Fab fragments using pASK85Rab-pro-WR13 was unsuccessful due to the aggregation of rabbit light chains, which probably relates to a general problem of this specific class of immunoglobulins with their additional Cys residues. Coexpression of rabbit Fab fragments together with four periplasmic folding-helper proteins encoded on pTUM4 led to a significantly improved folding efficiency, resulting in a yield of 50 µg/L OD600 affinity-purified rabbit Fab fragment (3.3 mg) from the 2 L bench-top fermenter.


1991 ◽  
Vol 278 (1) ◽  
pp. 225-234 ◽  
Author(s):  
M David ◽  
S Lubinsky-Mink ◽  
A Ben-Zvi ◽  
M Suissa ◽  
S Ulitzur ◽  
...  

A Mycobacterium smegmatis PstI library was constructed by cloning these fragments downstream from the lac promoter of the expression vector pHG171. Three identically sized clones were isolated by complementation of an Escherichia coli strain (chi 2338) deficient in citrate synthase. One insert (pBL265) was used in hybridization experiments with DNA from E. coli and M. smegmatis and it was demonstrated that the clones were indeed from M. smegmatis. The transcription of the M. smegmatis citrate synthase gene in E. coli relied upon the lac promoter. In translation experiments performed in vitro pBL265 gave rise to a novel protein of about 42 kDa. This band was not seen in ‘opposite-orientation’ subclones. Various subclones in which the 5′-end was shortened nevertheless complement E. coli chi 2338 and produce the 42 kDa protein. This demonstrates that the M. smegmatis citrate synthase gene uses its own ribosome-binding site in E. coli. The relevant 1.8 kb of the 2.8 kb insert was sequenced. A consensus E. coli ribosome-binding site was found centred precisely 10 bp upstream of the methionine codon. Other interesting features revealed by the sequence are discussed. Citrate synthase activity was assayed in vitro and the mycobacterial enzyme was found to be similar to those of the Gram-positive bacteria.


1999 ◽  
Vol 6 (3) ◽  
pp. 383-387 ◽  
Author(s):  
Hiroshi Tachibana ◽  
Xun-Jia Cheng ◽  
Katsuomi Watanabe ◽  
Masataka Takekoshi ◽  
Fumiko Maeda ◽  
...  

ABSTRACT Genes coding for human antibody Fab fragments specific forEntamoeba histolytica were cloned and expressed inEscherichia coli. Lymphocytes were separated from the peripheral blood of a patient with an amebic liver abscess. Poly(A)+ RNA was isolated from the lymphocytes, and then genes coding for the light chain and Fd region of the heavy chain were amplified by a reverse transcriptase PCR. The amplified DNA fragments were ligated with a plasmid vector and were introduced intoEscherichia coli. Three thousand colonies were screened for the production of antibodies to E. histolytica HM-1:IMSS by an indirect fluorescence-antibody (IFA) test. Lysates from fiveEscherichia coli clones were positive. Analysis of the DNA sequences of the five clones showed that three of the five heavy-chain sequences and four of the five light-chain sequences differed from each other. When the reactivities of the Escherichia colilysates to nine reference strains of E. histolytica were examined by the IFA test, three Fab fragments with different DNA sequences were found to react with all nine strains and another Fab fragment was found to react with seven strains. None of the four human monoclonal antibody Fab fragments reacted with Entamoeba dispar reference strains or with other enteric protozoan parasites. These results indicate that the bacterial expression system reported here is effective for the production of human monoclonal antibodies specific for E. histolytica. The recombinant human monoclonal antibody Fab fragments may be applicable for distinguishing E. histolytica from E. dispar and for use in the serodiagnosis of amebiasis.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 549
Author(s):  
Julia Ittensohn ◽  
Jacqueline Hemberger ◽  
Hannah Griffiths ◽  
Maren Keller ◽  
Simone Albrecht ◽  
...  

The uropathogenic Escherichia coli strain CFT073 causes kidney abscesses in mice Toll/interleukin-1 receptor domain-containing protein C (TcpC) dependently and the corresponding gene is present in around 40% of E. coli isolates of pyelonephritis patients. It impairs the Toll-like receptor (TLR) signaling chain and the NACHT leucin-rich repeat PYD protein 3 inflammasome (NLRP3) by binding to TLR4 and myeloid differentiation factor 88 as well as to NLRP3 and caspase-1, respectively. Overexpression of the tcpC gene stopped replication of CFT073. Overexpression of several tcpC-truncation constructs revealed a transmembrane region, while its TIR domain induced filamentous bacteria. Based on these observations, we hypothesized that tcpC expression is presumably tightly controlled. We tested two putative promoters designated P1 and P2 located at 5′ of the gene c2397 and 5′ of the tcpC gene (c2398), respectively, which may form an operon. High pH and increasing glucose concentrations stimulated a P2 reporter construct that was considerably stronger than a P1 reporter construct, while increasing FeSO4 concentrations suppressed their activity. Human urine activated P2, demonstrating that tcpC might be induced in the urinary tract of infected patients. We conclude that P2, consisting of a 240 bp region 5′ of the tcpC gene, represents the major regulator of tcpC expression.


2017 ◽  
Vol 39 (12) ◽  
pp. 1865-1873 ◽  
Author(s):  
Desmond M. Schofield ◽  
Ernestas Sirka ◽  
Eli Keshavarz-Moore ◽  
John M. Ward ◽  
Darren N. Nesbeth

2020 ◽  
Vol 8 (11) ◽  
pp. 1662
Author(s):  
Zachary R. Stromberg ◽  
Rick E. Masonbrink ◽  
Melha Mellata

Foodborne pathogens are a public health threat globally. Shiga toxin-producing Escherichia coli (STEC), particularly O26, O111, and O157 STEC, are often associated with foodborne illness in humans. To create effective preharvest interventions, it is critical to understand which factors STEC strains use to colonize the gastrointestinal tract of cattle, which serves as the reservoir for these pathogens. Several colonization factors are known, but little is understood about initial STEC colonization factors. Our objective was to identify these factors via contrasting gene expression between nonpathogenic E. coli and STEC. Colonic explants were inoculated with nonpathogenic E. coli strain MG1655 or STEC strains (O26, O111, or O157), bacterial colonization levels were determined, and RNA was isolated and sequenced. STEC strains adhered to colonic explants at numerically but not significantly higher levels compared to MG1655. After incubation with colonic explants, flagellin (fliC) was upregulated (log2 fold-change = 4.0, p < 0.0001) in O157 STEC, and collectively, Lon protease (lon) was upregulated (log2 fold-change = 3.6, p = 0.0009) in STEC strains compared to MG1655. These results demonstrate that H7 flagellum and Lon protease may play roles in early colonization and could be potential targets to reduce colonization in cattle.


1998 ◽  
Vol 66 (7) ◽  
pp. 3270-3278 ◽  
Author(s):  
M. Takano ◽  
H. Nishimura ◽  
Y. Kimura ◽  
Y. Mokuno ◽  
J. Washizu ◽  
...  

The number of γδ T cells in the peritoneal cavity was increased after an intraperitoneal (i.p.) infection with Escherichia coli in lipopolysaccharide (LPS)-responsive C3H/HeN mice but not in LPS-hyporesponsive C3H/HeJ mice. The γδ T cells preferentially expressed invariant Vγ6 and Vδ1 chains and proliferated to produce a large amount of gamma interferon in the presence of LPS. Mice depleted of γδ T cells by T-cell receptor δ gene mutation showed impaired resistance against E. coli as assessed by bacterial growth. Macrophages from C3H/HeN mice infected with E. coli expressed higher levels of interleukin-15 (IL-15) mRNA than those from the infected C3H/HeJ mice. Administration of anti-IL-15 monoclonal antibody inhibited, albeit partially, the appearance of γδ T cells in C3H/HeN mice after E. coli infection and diminished the host defense against the infection. These results suggest that LPS-stimulated γδ T cells play an important role in the host defense against E. coli infection and that IL-15 may be partly involved in the protection via an increase in the γδ T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Almaz Nigatu Tesfahun ◽  
Marina Alexeeva ◽  
Miglė Tomkuvienė ◽  
Aysha Arshad ◽  
Prashanna Guragain ◽  
...  

DNA polymerase III mis-insertion may, where not corrected by its 3′→ 5′ exonuclease or the mismatch repair (MMR) function, result in all possible non-cognate base pairs in DNA generating base substitutions. The most thermodynamically unstable base pair, the cytosine (C)⋅C mismatch, destabilizes adjacent base pairs, is resistant to correction by MMR in Escherichia coli, and its repair mechanism remains elusive. We present here in vitro evidence that C⋅C mismatch can be processed by base excision repair initiated by the E. coli formamidopyrimidine-DNA glycosylase (Fpg) protein. The kcat for C⋅C is, however, 2.5 to 10 times lower than for its primary substrate 8-oxoguanine (oxo8G)⋅C, but approaches those for 5,6-dihydrothymine (dHT)⋅C and thymine glycol (Tg)⋅C. The KM values are all in the same range, which indicates efficient recognition of C⋅C mismatches in DNA. Fpg activity was also exhibited for the thymine (T)⋅T mismatch and for N4- and/or 5-methylated C opposite C or T, Fpg activity being enabled on a broad spectrum of DNA lesions and mismatches by the flexibility of the active site loop. We hypothesize that Fpg plays a role in resolving C⋅C in particular, but also other pyrimidine⋅pyrimidine mismatches, which increases survival at the cost of some mutagenesis.


1996 ◽  
Vol 81 (4) ◽  
pp. 477-484 ◽  
Author(s):  
Lijun Xia ◽  
Jianming Gu ◽  
Xiaomin Zhang ◽  
Yue Liu ◽  
Haiying Wan ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ryo Yoshida ◽  
Hisashi Hemmi

Abstract Archaea produce unique membrane lipids, which possess two fully saturated isoprenoid chains linked to the glycerol moiety via ether bonds. The isoprenoid chain length of archaeal membrane lipids is believed to be important for some archaea to thrive in extreme environments because the hyperthermophilic archaeon Aeropyrum pernix and some halophilic archaea synthesize extended C25,C25-archaeal diether-type membrane lipids, which have isoprenoid chains that are longer than those of typical C20,C20-diether lipids. Natural archaeal diether lipids possessing longer C30 or C35 isoprenoid chains, however, have yet to be isolated. In the present study, we attempted to synthesize such hyperextended archaeal membrane lipids. We investigated the substrate preference of the enzyme sn-2,3-(digeranylfarnesyl)glycerol-1-phosphate synthase from A. pernix, which catalyzes the transfer of the second C25 isoprenoid chain to the glycerol moiety in the biosynthetic pathway of C25,C25-archaeal membrane lipids. The enzyme was shown to accept sn-3-hexaprenylglycerol-1-phosphate, which has a C30 isoprenoid chain, as a prenyl acceptor substrate to synthesize sn-2-geranylfarnesyl-3-hexaprenylglycerol-1-phosphate, a supposed precursor for hyperextended C25,C30-archaeal membrane lipids. Furthermore, we constructed an artificial biosynthetic pathway by introducing 4 archaeal genes and 1 gene from Bacillus subtilis in the cells of Escherichia coli, which enabled the E. coli strain to produce hyperextended C25,C30-archaeal membrane lipids, which have never been reported so far.


Sign in / Sign up

Export Citation Format

Share Document