Isolation and in vitro cultivation of the aphid pathogenic fungusEntomophthora planchoniana

2001 ◽  
Vol 47 (12) ◽  
pp. 1082-1087 ◽  
Author(s):  
Florian M Freimoser ◽  
Annette B Jensen ◽  
Urs Tuor ◽  
Markus Aebi ◽  
Jørgen Eilenberg

Entomophthora planchoniana is an important fungal pathogen of aphids. Although Entomophthora chromaphidis has been considered a synonym for E. planchoniana, the two species are now separated, and E. planchoniana is reported not to grow in vitro. In this paper, we describe for the first time the isolation and cultivation of this species. Entomophthora planchoniana was isolated from a population of Ovatus crataegarius (Homoptera, Aphididae), which was infected by E. planchoniana only. The isolates did not sporulate, but the sequence of the small subunit rDNA and the restriction fragment length polymorphism patterns of the first part of the large subunit rDNA and the ITS II region confirm that the isolates were E. planchoniana. The isolated fungus grew in a medium consisting of Grace's insect cell culture medium supplemented with lactalbumin hydrolysate, yeastolate, and 10% fetal bovine serum or in GLEN medium with 10% fetal bovine serum. Vegetative cells of E. planchoniana were long and club-shaped and did not stain with Calcofluor, thus suggesting that they were protoplasts.Key words: biological control, entomopathogen, Entomophthorales, protoplast, Zygomycetes.

Phytotaxa ◽  
2014 ◽  
Vol 189 (1) ◽  
pp. 52 ◽  
Author(s):  
Ekaphan Kraichak ◽  
Sittiporn Parnmen ◽  
Robert Lücking ◽  
EIMY RIVAS PLATA ◽  
André Aptroot ◽  
...  

We present an updated 3-locus molecular phylogeny of tribe Ocellularieae, the second largest tribe within subfamily Graphidoideae in the Graphidaceae. Adding 165 newly generated sequences from the mitochondrial small subunit rDNA (mtSSU), the nuclear large subunit rDNA (nuLSU), and the second largest subunit of the DNA-directed RNA polymerase II (RPB2), we currently distinguish 218 species among the sequenced material, including the outgroup. This corresponds to almost half the species at this point recognized within this tribe. The newly generated sequences include 23 newly described species and one newly described genus published elsewhere in this volume. For the first time, Sarcographina cyclospora Müll. Arg., in spite of its distinctly lirellate ascomata, is shown to belong in tribe Ocellularieae, as strongly supported sister to Ocellularia inturgescens (Müll. Arg.) Mangold. The following six new combinations are proposed: Melanotrema lynceodes (Nyl.) Rivas Plata, Lücking & Lumbsch, Ocellularia curranii (Vain.) Kraichak, Lücking & Lumbsch, O. khasiana (Patw. & Nagarkar) Kraichak, Lücking & Lumbsch, O. cinerea (Müll. Arg.) Kraichak, Lücking & Lumbsch, O. erodens (R. C. Harris) Kraichak, Lücking & Lumbsch, and O. laeviuscula (Nyl) Kraichak, Lücking & Lumbsch. Further, the new name Ocellularia hernandeziana Kraichak, Lücking & Lumbsch is introduced for Myriotrema ecorticatum. The nomenclatural status of the name Ocellularia microstoma is clarified.


2019 ◽  
Vol 187 (1) ◽  
pp. 1-30 ◽  
Author(s):  
Borong Lu ◽  
Lifang Li ◽  
Xiaozhong Hu ◽  
Daode Ji ◽  
Khaled A S Al-Rasheid ◽  
...  

Abstract The classification of loricate peritrich ciliates is difficult because of an accumulation of several taxonomic problems. In the present work, three poorly described vaginicolids, Pyxicola pusilla, Cothurnia ceramicola and Vaginicola tincta, were isolated from the surface of two freshwater/marine algae in China. In our study, the ciliature of Pyxicola and Vaginicola is revealed for the first time, demonstrating the taxonomic value of infundibular polykineties. The small subunit rDNA, ITS1-5.8S rDNA-ITS2 region and large subunit rDNA of the above species were sequenced for the first time. Phylogenetic analyses based on these genes indicated that Pyxicola and Cothurnia are closely related. The present study suggested that the loricate species probably represent a distinct lineage in peritrich evolution and both genera Cothurnia and Thuricola are monophyletic. Pyxicola pusilla, Cothurnia ceramicola and Vaginicola tincta are recircumscribed.


Author(s):  
Arushdeep Sidana ◽  
Afroz Alam ◽  
Umar Farooq

Fetal Bovine Serum (FBS) is an expensive source of macronutrients which are required for proper nutrition of Leishmania parasite in the culture medium. An alternative, cost effective source of macronutrients which can replace the use of FBS in tissue culture medium is required. The potential of Soy Protein Isolate (SPI) to replace FBS in RPMI-1640 medium for the in vitro cultivation of Leishmania donovani was evaluated. Commercially available SPI powder was used in RPMI-1640 medium as a substitute of FBS to cultivate L. donovani promastigotes. The growth, multiplication and morphology of cultivated parasites was observed in conventional RPMI-1640 with 10% FBS (v/v) and RPMI-1640 containing 10% SPI (v/v) by using light microscopy, measurement of absorbance and cell counting. The growth of Leishmania promastigotes in the medium containing 10% SPI was slower in initial phase; however, the parasites were morphologically larger as compared to those in RPMI-1640 medium containing 10% FBS. Cell count in the SPI-containing RPMI-1640 medium was 2.3 × 108 cells/ml whereas it was 1.9 × 107 cells/ml in RPMI-1640 with 10% FBS. This study concludes that RPMI-1640 may be supplemented with SPI instead of FBS for the in vitro cultivation of Leishmania donovani promastigotes to decrease the culture maintenance cost in developing countries.


2006 ◽  
Vol 65 (2) ◽  
pp. 374-386 ◽  
Author(s):  
Misae Suzuki ◽  
Koji Misumi ◽  
Manabu Ozawa ◽  
Junko Noguchi ◽  
Hiroyuki Kaneko ◽  
...  

2011 ◽  
Vol 57 (4) ◽  
pp. 356-361
Author(s):  
Ikuo Nishigaki ◽  
Gowri Rangasamy Gunassekaran ◽  
Panjan Nagappan Venkatesan ◽  
Mandupal Chaco Sabu ◽  
Sabu Priya ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3538 ◽  
Author(s):  
Brandon Lehrich ◽  
Yaxuan Liang ◽  
Pooya Khosravi ◽  
Howard Federoff ◽  
Massimo Fiandaca

It is known that culture media (CM) promotes cellular growth, adhesion, and protects explanted primary brain cells from in vitro stresses. The fetal bovine serum (FBS) supplement used in most CM, however, contains significant quantities of extracellular vesicles (EVs) that confound quantitative and qualitative analyses from the EVs produced by the cultured cells. We quantitatively tested the ability of common FBS EV-depletion protocols to remove exogenous EVs from FBS-supplemented CM and evaluated the influence such methods have on primary astrocyte culture growth and viability. We assessed two methodologies utilized for FBS EV removal prior to adding to CM: (1) an 18-h ultracentrifugation (UC); and (2) a commercial EV-depleted FBS (Exo-FBS™). Our analysis demonstrated that Exo-FBS™ CM provided the largest depletion (75%) of total FBS EVs, while still providing 6.92 × 109 ± 1.39 × 108 EVs/mL. In addition, both UC and Exo-FBS™ CM resulted in poor primary astrocyte cell growth and viability in culture. The two common FBS EV-depletion methods investigated, therefore, not only contaminate in vitro primary cell-derived EV analyses, but also provide a suboptimal environment for primary astrocyte cell growth and viability. It appears likely that future CM optimization, using a serum-free alternative, might be required to advance analyses of cell-specific EVs isolated in vitro.


2021 ◽  
Author(s):  
Xenia Dolde ◽  
Christiaan Karreman ◽  
Marianne Wiechers ◽  
Stefan Schildknecht ◽  
Marcel Leist

Fetal bovine serum (FBS) is the only known stimulus for migration of human neural crest cells (NCCs). Non-animal chemoattractants are desirable for the optimization of chemotaxis assays to be incorporated in a test battery for reproductive and developmental toxicity. We confirmed here in an optimized transwell assay that FBS triggers directed migration along a concentration gradient. The responsible factor was found to be a protein in the 30-100 kDa size range. In a targeted approach, we tested a large panel of serum constituents known to be chemotactic for NCCs in animal models (e.g. VEGF, PDGF, FGF, SDF-1/CXCL12, ephrins, endothelin, Wnt, BMPs). None of the corresponding human proteins showed any effect in our chemotaxis assays based on human NCCs. We then examined in a broad screening approach, whether human cells would produce any factor able to trigger NCC migration. We found that HepG2 hepatoma cells produced chemotaxis-triggering activity (CTA). Using chromatographic methods and by employing the NCC chemotaxis test as bioassay, the responsible protein was enriched by up to 5000-fold. We also explored human serum and platelets as direct source, independent of any cell culture manipulations. A CTA was enriched from platelet lysates several thousand-fold. Its temperature and protease-sensitivity suggested a protein component. The capacity of this factor to trigger chemotaxis was confirmed by single-cell video-tracking analysis of migrating NCCs. The human CTA characterized here may be employed in the future for the setup of assays testing for the disturbance of directed NCC migration by toxicants.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1150-1157 ◽  
Author(s):  
AR Migliaccio ◽  
G Migliaccio ◽  
M Brice ◽  
P Constantoulakis ◽  
G Stamatoyannopoulos ◽  
...  

Abstract We have studied the effects of recombinant hematopoietic growth factors, granulocyte-macrophage colony-stimulating factor (GM-CSF) and/or interleukin-3 (IL-3) on the globin program of adult human erythroid progenitors (BFUe) stimulated to terminal differentiation by erythropoietin under fetal bovine serum (FBS)-supplemented or FBS- deprived culture conditions. Fetal globin production by BFUe-derived erythroblasts was assessed at the protein and mRNA level and its cellular distribution was evaluated by immunofluorescence. Although hemoglobinization and maturation of BFUe-derived erythroblasts was by and large comparable in FBS-replete versus FBS-deprived cultures, the latter had significantly less (up to 20-fold) gamma-globin and gamma- globin mRNA levels. Reduced gamma-globin in serum-deprived cultures was also reflected by a smaller proportion of erythroblasts with detectable gamma-globin by immunofluorescence. Erythroid bursts induced by either GM-CSF or IL-3 produced similar levels of gamma-globin both in FBS- supplemented and in FBS-deprived cultures. These results, obtained even in cultures of highly enriched BFUe, suggest that GM-CSF and IL-3, although they significantly increase the number and size of erythroid bursts, do not by themselves exert a direct influence on the level of fetal globin synthesis. By contrast, factor(s) present in FBS appear to exert a dominant influence on fetal globin synthesis in vitro. Although FBS-deprived conditions appear to largely abrogate the in vitro activation of fetal hemoglobin (Hb F) in normal samples, they do support increased Hb F production in samples from patients with hereditary persistence of fetal hemoglobin or from cord blood.


Sign in / Sign up

Export Citation Format

Share Document