Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant

2002 ◽  
Vol 48 (3) ◽  
pp. 189-199 ◽  
Author(s):  
Andrei A Belimov ◽  
Vera I Safronova ◽  
Tetsuro Mimura

Responses of rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria, Pseudomonas putida Am2, Pseudomonas putida Bm3, Alcaligenes xylosoxidans Cm4, and Pseudomonas sp. Dp2, containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were studied using growth pouch and soil cultures. In growth pouch culture, the bacteria significantly increased root elongation of phosphorus-sufficient seedlings, whereas root elongation of phosphorus-deficient seedlings was not affected or was even inhibited by the bacteria. Bacterial stimulation of root elongation of phosphorus-sufficient seedlings was eliminated in the presence of a high ammonia concentration (1 mM) in the nutrient solution. Bacterial effects on root elongation of potassium-deficient and potassium-sufficient seedlings were similar. The bacteria also decreased inorganic phosphate content in shoots of potassium- and phosphorus-sufficient seedlings, reduced ethylene production by phosphorus-sufficient seedlings, and inhibited development of root hairs. The effects of treatment with Ag+, a chemical inhibitor of plant ethylene production, on root elongation, ethylene evolution, and root hair formation were similar to bacterial treatments. The number of bacteria on the roots of phosphorus-deficient seedlings was not limited by phosphorus deficiency. In pot experiments with soil culture, inoculation of seeds with bacteria and treatment with aminoethoxyvinylglycine, an inhibitor of ethylene biosynthesis in plants, increased root and (or) shoot biomass of rape plants. Stimulation of plant growth caused by the bacteria was often associated with a decrease in the content of nutrients, such as P, K, S, Mo, and Ba, in shoots, depending on the strain used. The results obtained show that the growth-promoting effects of ACC-utilizing rhizobacteria depend significantly on the nutrient status of the plant.Key words: 1-aminocyclopropane-1-carboxylate deaminase, Brassica napus, PGPR, phosphorus uptake, plant-bacteria interaction, ethylene, Pseudomonas.

1994 ◽  
Vol 40 (11) ◽  
pp. 911-915 ◽  
Author(s):  
Bernard R. Glick ◽  
Christian B. Jacobson ◽  
Melinda M. K. Schwarze ◽  
J. J. Pasternak

The plant growth promoting rhizobacterium Pseudomonas putida GR12-2 was mutagenized with nitrosoguanidine and three separate mutants that were unable to utilize 1-aminocyclopropane-1-carboxylic acid (ACC) as a sole nitrogen source were selected. These mutants are devoid of the ACC deaminase activity that is present in wild-type P. putida GR12-2 cells. Only wild-type cells, but not any of the ACC deaminase mutants, promoted root elongation of developing canola seedlings under gnotobiotic conditions. These results are interpreted in terms of a model in which P. putida GR12-2 promotes root elongation by binding to germinating seeds and sequesters and hydrolyzes some of the unbound ACC, thereby lowering the level of ACC and hence the endogenous ethylene concentration, allowing the roots to grow longer.Key words: 1-aminocyclopropane-1-carboxylate, ACC, plant growth promoting rhizobacteria, PGPR, ACC deaminase, bacterial fertilizer.


1991 ◽  
Vol 37 (10) ◽  
pp. 796-799 ◽  
Author(s):  
Yuwen Hong ◽  
J. J. Pasternak ◽  
Bernard R. Glick

Pseudomonas putida GR12-2, a plant growth promoting rhizobacterium, was transformed with the broad host range plasmid pGSS15. The presence of the plasmid caused (i) a decrease in cell generation times, (ii) an altered pattern of cell proteins, (iii) an inhibition of the enhancement of canola root elongation, (iv) impairment of nitrogen fixation, and (v) a decrease in siderophore production. Strains that were cured of pGSS15, on the other hand, re-established growth rates, levels of siderophore production, and canola root elongation capabilities equivalent to nontransformed P. putida GR12-2. Thus, the transforming plasmid imposes a metabolic load on the recipient bacteria that impacts on a number of different energy-dependent processes. Key words: plant growth promoting rhizobacteria, nitrogen fixation, Pseudomonas, transformation, metabolic load.


2000 ◽  
Vol 46 (3) ◽  
pp. 229-236 ◽  
Author(s):  
H. Bertrand ◽  
C. Plassard ◽  
X. Pinochet ◽  
B. Touraine ◽  
P. Normand ◽  
...  

1995 ◽  
Vol 41 (9) ◽  
pp. 776-784 ◽  
Author(s):  
Xiuying Sun ◽  
Marilyn Griffith ◽  
J. J. Pasternak ◽  
Bernard R. Glick

The plant growth promoting rhizobacterium Pseudomonas putida GR12-2 was originally isolated from the rhizosphere of plants growing in the Canadian High Arctic. Here we report that this bacterium was able to grow and promote root elongation of both spring and winter canola at 5 °C, a temperature at which only a relatively small number of bacteria are able to proliferate and function. In addition, the bacterium survived exposure to freezing temperatures, i.e., −20 and −50 °C. In an effort to determine the mechanistic basis for this behaviour, it was discovered that following growth at 5 °C, P. putida GR12-2 synthesized and secreted to the growth medium a protein with antifreeze activity. Analysis of the spent growth medium, following concentration by ultrafiltration, by SDS-polyacrylamide gel electrophoresis revealed the presence of one major protein with a molecular mass of approximately 32–34 kDa and a number of minor proteins. However, at this point it is not known which of these proteins contains the antifreeze activity.Key words: plant growth promoting rhizobacteria, PGPR, bacterial fertilizer, soil bacteria, antifreeze protein.


2009 ◽  
Vol 55 (11) ◽  
pp. 1302-1309 ◽  
Author(s):  
Sajid Mahmood Nadeem ◽  
Zahir Ahmad Zahir ◽  
Muhammad Naveed ◽  
Muhammad Arshad

Salt stress is one of the major constraints hampering agricultural production owing to its impact on ethylene production and nutritional imbalance. A check on the accelerated ethylene production in plants could be helpful in minimizing the negative effect of salt stress on plant growth and development. Four Pseudomonas , 1 Flavobacterium , and 1 Enterobacter strain of plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate (ACC)-deaminase were selected and their effects on growth and yield of maize were investigated to improve the salt tolerance of maize grown on salt-affected fields. The selected rhizobacterial isolates reduced or eliminated the classical “triple” response, indicating their ability to reduce stress-induced ethylene levels. Results showed that rhizobacterial strains, particularly Pseudomonas and Enterobacter spp., significantly promoted the growth and yield of maize compared with the non-inoculated control. Pseudomonas fluorescens increased plant height, biomass, cob yield, grain yield, 1000 grain mass, and straw yield of maize up to 29%, 127%, 67%, 60%, 17%, and 166%, respectively, over the control. Under stress conditions, more N, P, and K uptake and high K+–Na+ ratios were recorded in inoculated plants compared with the control. The results imply that inoculation with plant growth promoting rhizobacteria containing ACC-deaminase could be a useful approach for improving growth and yield of maize under salt-stressed conditions.


Sign in / Sign up

Export Citation Format

Share Document