Biological consequences of plasmid transformation of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2

1991 ◽  
Vol 37 (10) ◽  
pp. 796-799 ◽  
Author(s):  
Yuwen Hong ◽  
J. J. Pasternak ◽  
Bernard R. Glick

Pseudomonas putida GR12-2, a plant growth promoting rhizobacterium, was transformed with the broad host range plasmid pGSS15. The presence of the plasmid caused (i) a decrease in cell generation times, (ii) an altered pattern of cell proteins, (iii) an inhibition of the enhancement of canola root elongation, (iv) impairment of nitrogen fixation, and (v) a decrease in siderophore production. Strains that were cured of pGSS15, on the other hand, re-established growth rates, levels of siderophore production, and canola root elongation capabilities equivalent to nontransformed P. putida GR12-2. Thus, the transforming plasmid imposes a metabolic load on the recipient bacteria that impacts on a number of different energy-dependent processes. Key words: plant growth promoting rhizobacteria, nitrogen fixation, Pseudomonas, transformation, metabolic load.

2002 ◽  
Vol 48 (3) ◽  
pp. 189-199 ◽  
Author(s):  
Andrei A Belimov ◽  
Vera I Safronova ◽  
Tetsuro Mimura

Responses of rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria, Pseudomonas putida Am2, Pseudomonas putida Bm3, Alcaligenes xylosoxidans Cm4, and Pseudomonas sp. Dp2, containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were studied using growth pouch and soil cultures. In growth pouch culture, the bacteria significantly increased root elongation of phosphorus-sufficient seedlings, whereas root elongation of phosphorus-deficient seedlings was not affected or was even inhibited by the bacteria. Bacterial stimulation of root elongation of phosphorus-sufficient seedlings was eliminated in the presence of a high ammonia concentration (1 mM) in the nutrient solution. Bacterial effects on root elongation of potassium-deficient and potassium-sufficient seedlings were similar. The bacteria also decreased inorganic phosphate content in shoots of potassium- and phosphorus-sufficient seedlings, reduced ethylene production by phosphorus-sufficient seedlings, and inhibited development of root hairs. The effects of treatment with Ag+, a chemical inhibitor of plant ethylene production, on root elongation, ethylene evolution, and root hair formation were similar to bacterial treatments. The number of bacteria on the roots of phosphorus-deficient seedlings was not limited by phosphorus deficiency. In pot experiments with soil culture, inoculation of seeds with bacteria and treatment with aminoethoxyvinylglycine, an inhibitor of ethylene biosynthesis in plants, increased root and (or) shoot biomass of rape plants. Stimulation of plant growth caused by the bacteria was often associated with a decrease in the content of nutrients, such as P, K, S, Mo, and Ba, in shoots, depending on the strain used. The results obtained show that the growth-promoting effects of ACC-utilizing rhizobacteria depend significantly on the nutrient status of the plant.Key words: 1-aminocyclopropane-1-carboxylate deaminase, Brassica napus, PGPR, phosphorus uptake, plant-bacteria interaction, ethylene, Pseudomonas.


1994 ◽  
Vol 40 (11) ◽  
pp. 911-915 ◽  
Author(s):  
Bernard R. Glick ◽  
Christian B. Jacobson ◽  
Melinda M. K. Schwarze ◽  
J. J. Pasternak

The plant growth promoting rhizobacterium Pseudomonas putida GR12-2 was mutagenized with nitrosoguanidine and three separate mutants that were unable to utilize 1-aminocyclopropane-1-carboxylic acid (ACC) as a sole nitrogen source were selected. These mutants are devoid of the ACC deaminase activity that is present in wild-type P. putida GR12-2 cells. Only wild-type cells, but not any of the ACC deaminase mutants, promoted root elongation of developing canola seedlings under gnotobiotic conditions. These results are interpreted in terms of a model in which P. putida GR12-2 promotes root elongation by binding to germinating seeds and sequesters and hydrolyzes some of the unbound ACC, thereby lowering the level of ACC and hence the endogenous ethylene concentration, allowing the roots to grow longer.Key words: 1-aminocyclopropane-1-carboxylate, ACC, plant growth promoting rhizobacteria, PGPR, ACC deaminase, bacterial fertilizer.


1995 ◽  
Vol 41 (7) ◽  
pp. 624-628 ◽  
Author(s):  
Yuwen Hong ◽  
J. J. Pasternak ◽  
Bernard R. Glick

When the broad host range plasmid vector pGSS15 was used to genetically transform the plant growth promoting rhizobacterium Pseudomonas putida GR12-2, the transformants were physiologically debilitated. It was postulated that the expression of the β-lactamase gene of pGSS15 caused a metabolic load resulting in the impaired functioning of the bacterium. To test this hypothesis, derivatives of pGSS15 that either lack the β-lactamase gene (pYH122) or in which a β-glucosidase gene was substituted for the β-lactamase gene (pYH124) were constructed and examined to see whether their presence also impaired the functioning of P. putida GR12-2. On the basis of growth rates, siderophore production, and the ability to stimulate canola root elongation in sterile growth pouches, neither of the newly constructed plasmids debilitated P. putida GR12-2. In addition, P. putida GR12-2 transformed with pYH124 facilitated the proliferation of the bacterium in minimal medium containing cellobiose at low temperature. This latter trait may enable P. putida GR12-2 to persist in the soil in competition with other microorganisms.Key words: plant growth promoting rhizobacteria, PGPR, bacterial fertilizer, soil bacteria, metabolic load, β-glucosidase


1995 ◽  
Vol 41 (6) ◽  
pp. 445-451 ◽  
Author(s):  
Weizhen Tang ◽  
J. J. Pasternak ◽  
Bernard R. Glick

Transformation of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 with broad-host-range vectors can affect the growth of the bacterium, its ability to promote root elongation of canola seedlings under gnotobiotic conditions, and its persistence in soil. Plasmid transformants, and a transposon-mutagenized derivative of P. putida GR12-2, fell into two classes with respect to these three attributes: strains that were clearly diminished in these capabilities and strains that behaved like the nontransformed wild type. These differences can be accounted for by the imposition of a metabolic load that is created by some types of genetic modification that results in a physiological impairment of the modified bacterium and decreases its ability to function as a plant growth promoting rhizobacterium.Key words: plant growth promoting rhizobacteria, PGPR, bacterial fertilizer, soil bacteria, soil persistence, microcosm.


GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 425-431
Author(s):  
Subin Thomas ◽  
Dr. M. Nandhini

Biofertilizers are fertilizers containing microorganisms that promote plant growth by improving the supply of nutrients to the host plant. The supply of nutrients is improved naturally by nitrogen fixation and solubilizing phosphorus. The living microorganisms in biofertilizers help in building organic matter in the soil and restoring the natural nutrient cycle. Biofertilizers can be grouped into Nitrogen-fixing biofertilizers, Phosphorous-solubilizing biofertilizers, Phosphorous-mobilizing biofertilizers, Biofertilizers for micro nutrients and Plant growth promoting rhizobacteria. This study conducted in Kottayam district was intended to identify the awareness and acceptance of biofertilizers among the farmers of the area. Data have been collected from 120 farmers by direct interviews with structured questionnaire.


1995 ◽  
Vol 41 (9) ◽  
pp. 776-784 ◽  
Author(s):  
Xiuying Sun ◽  
Marilyn Griffith ◽  
J. J. Pasternak ◽  
Bernard R. Glick

The plant growth promoting rhizobacterium Pseudomonas putida GR12-2 was originally isolated from the rhizosphere of plants growing in the Canadian High Arctic. Here we report that this bacterium was able to grow and promote root elongation of both spring and winter canola at 5 °C, a temperature at which only a relatively small number of bacteria are able to proliferate and function. In addition, the bacterium survived exposure to freezing temperatures, i.e., −20 and −50 °C. In an effort to determine the mechanistic basis for this behaviour, it was discovered that following growth at 5 °C, P. putida GR12-2 synthesized and secreted to the growth medium a protein with antifreeze activity. Analysis of the spent growth medium, following concentration by ultrafiltration, by SDS-polyacrylamide gel electrophoresis revealed the presence of one major protein with a molecular mass of approximately 32–34 kDa and a number of minor proteins. However, at this point it is not known which of these proteins contains the antifreeze activity.Key words: plant growth promoting rhizobacteria, PGPR, bacterial fertilizer, soil bacteria, antifreeze protein.


Sign in / Sign up

Export Citation Format

Share Document