Evaluation of two wild types of Pleurotus ostreatus (MCC07 and MCC20) isolated from nature for their ability to decolorize Benazol Black ZN textile dye in comparison to some commercial types of white rot fungi: Pleurotus ostreatus, Pleurotus djamor, and Pleurotus citrinopileatus

2008 ◽  
Vol 54 (5) ◽  
pp. 366-370 ◽  
Author(s):  
Erbil Kalmış ◽  
Nuri Azbar ◽  
Fatih Kalyoncu

Biological decolorization of Benazol Black ZN, a reactive azo-type textile dyestuff, was comparatively studied using 3 different commercial-type white rot fungi strains ( Pleurotus ostreatus , Pleurotus cornucopiae var. citrinopileatus, Pleurotus djamor , and 2 wild types of P. ostreatus (MCC07 and MCC20) isolated from the nature. The initial dye concentrations in the medium were 500 and 1000 mg·L–1. All the organisms studied decolorized Benazol Black ZN to varying degrees. At low dye concentration, both commercial and wild type of P. ostreatus resulted in the best decolorization, conversely, wild-type P. ostreatus (MCC07) was found to be much more robust against increasing dye concentration and provided the best decolorization efficiency at high dye concentration.

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3797-3807
Author(s):  
Magdah Ganash ◽  
Tarek M. Abdel Ghany ◽  
Mohamed A. Al Abboud ◽  
Mohamed M. Alawlaqi ◽  
Husam Qanash ◽  
...  

Lignocellulolytic white-rot fungi allow the bioconversion of agricultural wastes into value-added products that are used in a myriad of applications. The aim of this work was to use corn residues (Zea mays L.) to produce valuable products under solid-state fermentation (SSF) with Pleurotus ostreatus. White-rot fungus P. ostreatus was isolated from maize silage (MS) and thereafter it was inoculated on MS as substrate and compared with maize stover (MSt) and maize cobs (MC) to determine the best lignocellulosic substrate for the production of lignocellulolytic enzymes and extracellular protein. The MS gave the highest productivity of CMCase (368.2 U/mL), FPase (170.5 U/mL), laccase (11.4 U/mL), and MnPase (6.6 U/mL). This is compared to productivity on MSt of 222 U/mL, 50.2 U/mL, 4.55 U/mL, and 2.57 U/mL, respectively; and productivity on MC at the same incubation period as 150.5 U/mL, 48.2 U/mL, 3.58 U/mL, and 2.5 U/mL, respectively. The levels of enzyme production declined with increasing incubation period after 15 and 20 days using MS and MC, respectively, as substrates. Maximum liberated extracellular protein content (754 to 878 µg/mL) was recorded using MS, while a low amount (343 to 408 µg/mL) was liberated with using MSt and MC.


Author(s):  
Cristiane Patrícia Kist ◽  
Claudio Eduardo Scherer ◽  
Marlene Soares ◽  
Marcio Barreto Rodrigues

Pleurotus fungi are basidiomycetes that stand out in the degradation of recalcitrant organic compounds such as lignin derivatives and phenolic compounds. The aim of this study was to make a comparative evaluation of the capacity of the Pleurotus ostreatus POS 560 and Pleurotus floridae PSP1 fungi in the degradation of 2,4 and 2,6-dinitrotoluene (DNTs) in effluent from an explosive factory. The characterization of the effluent indicated 318 mg L-1 of DNTs, 246 mg L-1 of COD and toxicity factor for Daphnia magna corresponding to 8. The conduct of a multivariate study estimated the influence of the variables pH (5.0 and 6.0), co-substrate concentration (10 and 20 g L-1 of glucose) and species of the fungus Pleurotus (ostreatus and floridae) on the degradation of DNTs, indicating that the variables Fungus and [Glucose] were significant (p <0.05) presenting effects in the order of + 4.45 ± 0.26 and -1.14 ± 0.26, respectively. The reproduction of the best efficiency conditions (P. floridae; pH 6.0 and 10 g L-1 of glucose) in agitated flasks (100 rpm, 26oC) was able to carry out, within 14 days of treatment, the removal of organic matter and toxicity factor in levels on the order of 55 and 50%, respectively, in addition to the complete degradation of DNTs which occurred in the first 120 hours of treatment. In this period, the maximum activity of the peroxidase and Mn-peroxidase enzymes was also characterized, suggesting high potential of the bioprocess under study for remediation of effluents contaminated with nitroaromatic compounds.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247452
Author(s):  
Micol Bellucci ◽  
Francesca Marazzi ◽  
Alida Musatti ◽  
Riccardo Fornaroli ◽  
Andrea Turolla ◽  
...  

The treatability of seven wastewater samples generated by a textile digital printing industry was evaluated by employing 1) anammox-based processes for nitrogen removal 2) microalgae (Chlorella vulgaris) for nutrient uptake and biomass production 3) white-rot fungi (Pleurotus ostreatus and Phanerochaete chrysosporium) for decolorization and laccase activity. The biodegradative potential of each type of organism was determined in batch tests and correlated with the main characteristics of the textile wastewaters through statistical analyses. The maximum specific anammox activity ranged between 0.1 and 0.2 g N g VSS-1 d-1 depending on the sample of wastewater; the photosynthetic efficiency of the microalgae decreased up to 50% during the first 24 hours of contact with the textile wastewaters, but it improved from then on; Pleurotus ostreatus synthetized laccases and removed between 20–62% of the colour after 14 days, while the enzymatic activity of Phanerochaete chrysosporium was inhibited. Overall, the findings suggest that all microbes have great potential for the treatment and valorisation of textile wastewater after tailored adaptation phases. Yet, the depurative efficiency can be probably enhanced by combining the different processes in sequence.


2019 ◽  
Vol 9 (19) ◽  
pp. 4185 ◽  
Author(s):  
Se Chul Chun ◽  
Manikandan Muthu ◽  
Nazim Hasan ◽  
Shadma Tasneem ◽  
Judy Gopal

With the rising awareness on environmental issues and the increasing risks through industrial development, clean up remediation measures have become the need of the hour. Bioremediation has become increasingly popular owing to its environmentally friendly approaches and cost effectiveness. Polychlorinated biphenyls (PCBs) are an alarming threat to human welfare as well as the environment. They top the list of hazardous xenobiotics. The multiple effects these compounds render to the niche is not unassessed. Bioremediation does appear promising, with myco remediation having a clear edge over bacterial remediation. In the following review, the inputs of white-rot fungi in PCB remediation are examined and the lacunae in the practical application of this versatile technology highlighted. The unique abilities of Pleurotus ostreatus and its deliverables with respect to removal of PCBs are presented. The need for improvising P. ostreatus-mediated remediation is emphasized.


2015 ◽  
Vol 104 ◽  
pp. 231-237 ◽  
Author(s):  
Ehsan Bari ◽  
Nouredin Nazarnezhad ◽  
Seyed Mahmoud Kazemi ◽  
Mohammad Ali Tajick Ghanbary ◽  
Behbood Mohebby ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document