In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp.

2008 ◽  
Vol 54 (11) ◽  
pp. 950-956 ◽  
Author(s):  
Patrícia Pozzatti ◽  
Liliane Alves Scheid ◽  
Tatiana Borba Spader ◽  
Margareth Linde Atayde ◽  
Janio Morais Santurio ◽  
...  

In the present study, the antifungal activity of selected essential oils obtained from plants used as spices was evaluated against both fluconazole-resistant and fluconazole-susceptible Candida spp. The Candida species studied were Candida albicans , Candida dubliniensis , Candida tropicalis , Candida glabrata , and Candida krusei. For comparison purposes, they were arranged in groups as C. albicans, C. dubliniensis, and Candida non-albicans. The essential oils were obtained from Cinnamomum zeylanicum Breyn, Lippia graveolens HBK, Ocimum basilicum L., Origanum vulgare L., Rosmarinus officinalis L., Salvia officinalis L., Thymus vulgaris L., and Zingiber officinale . The susceptibility tests were based on the M27-A2 methodology. The chemical composition of the essential oils was obtained by gas chromatography – mass spectroscopy and by retention indices. The results showed that cinnamon, Mexican oregano, oregano, thyme, and ginger essential oils have different levels of antifungal activity. Oregano and ginger essential oils were found to be the most and the least efficient, respectively. The main finding was that the susceptibilities of fluconazole-resistant C. albicans, C. dubliniensis, and Candida non-albicans to Mexican oregano, oregano, thyme, and ginger essential oils were higher than those of the fluconazole-susceptible yeasts (P < 0.05). In contrast, fluconazole-resistant C. albicans and Candida non-albicans were less susceptible to cinnamon essential oil than their fluconazole-susceptible counterparts (P < 0.05). A relationship between the yeasts’ susceptibilities and the chemical composition of the essential oils studied was apparent when these 2 parameters were compared. Finally, basil, rosemary, and sage essential oils did not show antifungal activity against Candida isolates at the tested concentrations.

2019 ◽  
Vol 79 (3) ◽  
pp. 432-437 ◽  
Author(s):  
J. N. Vieira ◽  
C. L. Gonçalves ◽  
J. P. V. Villarreal ◽  
V. M. Gonçalves ◽  
R. G. Lund ◽  
...  

Abstract The aims of this research were: evaluate the chemical composition and the cytotoxicity of the Cuminum cyminum (cumin), Anethum graveolens (dill), Pimpinella anisum (anise) and Foeniculum vulgare (fennel) essential oils, as well as their antifungal activity in vitro against ten Candida spp. isolates. The chemical composition of the oils was analyzed by means of gas chromatography coupled with mass spectrometry (GC/MS). The cytotoxicity assays were performed, using the cell proliferation reagent WST-1 in L929 mouse fibroblasts (20x103 well-1). The determinate the Minimum Inhibitory Concentration (MIC), was performed through the Broth Microdilution technique (CLSI). The chemical main components were the cuminaldehyde (32.66%) for cumin, carvone (34.89%) for the dill, trans-anethole (94.01%) for the anise and anethole (79.62%) for the fennel. Anise and fennel did not were cytotoxic in all the tested concentrations, however the cumin oil was cytotoxic in the concentration of 20 mg.mL-1 and the dill in the concentrations of 20 and 8 mg.mL-1. All yeasts were susceptible against the evaluated essential oils. Cumin presented the lowest MIC against yeasts. We concluded that all the essential oils presented inhibitory action against Candida spp., and C . cyminum, P. anisum and F. vulgare were not cytotoxic in the same minimum inhibitory concentrations for the fungi.


2020 ◽  
Vol 18 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Tomasz Baj ◽  
Anna Biernasiuk ◽  
Rafał Wróbel ◽  
Anna Malm

AbstractThe purpose of this research was to investigate the chemical composition of essential oils (EOs) from: Origanum vulgare L., Satureja hortensis L., Thymus serpyllum L. and Thymus vulgaris L. (Lamiaceae) cultivated in Poland, and to study their antifungal activity towards clinical isolates of oral Candida spp. The hydrodistilled essential oils were analyzed using the GC-MS method. The antifungal activity was evaluated in vitro against oral isolates and reference strains of Candida albicans and C. glabrata, using the broth microdilution method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) guidelines, allowing for estimation of minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). GC-MS analysis revealed that carvacrol was the main EO compound in oregano and summer savory, while thymol and linalool were the major ingredients of thyme and wild thyme oils, respectively. The EOs possessed fungicidal activity against C. albicans and C. glabrata, including oral isolates, with MIC = 125 – 2000 mg/L, MFC = 250 – 4000 mg/L and MFC/MIC = 1 – 4, depending on the yeast and plant species. The most active was thyme oil – with MIC = 125 – 500 mg/L, MFC = 250 – 500 mg/L and MFC/MIC = 1 – 2.


2008 ◽  
Vol 14 (S3) ◽  
pp. 148-149 ◽  
Author(s):  
M. Zuzarte ◽  
A.M. Dinis ◽  
C. Cavaleiro ◽  
J. Canhoto ◽  
L. Salgueiro

The selection of native Lavandula species and their economic exploitation have increased in the last few years. Micropropagation techniques have been used as an alternative for vegetative propagation allowing the multiplication of selected genotypes and chemotypes. Our previous studies showed that the essential oils of Lavandula pedunculata have an important antifungal activity against dermatophyte strains. Therefore, a new line of investigation concerning the in vitro culture of this species is justified. In the present study we compare the morphology of the leaf trichomes and the chemical composition of their essential oils in both field-growing and in vitro propagated plants.


2018 ◽  
Vol 73 (7-8) ◽  
pp. 313-318 ◽  
Author(s):  
Rose Vanessa Bandeira Reidel ◽  
Simona Nardoni ◽  
Francesca Mancianti ◽  
Claudia Anedda ◽  
Abd El-Nasser G. El Gendy ◽  
...  

Abstract The objective of the present paper was the assessment of the chemical composition of the essential oils from four Asteraceae species with a considerable food, medicinal, and agricultural value, collected in Egypt, together with their in vitro inhibitory activity against molds and yeasts. The essential oil of Launaea cornuta flowers was also evaluated for the first time, but because of its very low yield (<0.01%), no antifungal test was performed.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3532
Author(s):  
Ben Salha ◽  
Herrera Díaz ◽  
Lengliz ◽  
Abderrabba ◽  
Labidi

In this study, Carum carvi L. essential oil (CEO) and Origanum majorana L. essential oil (MEO) was steam-distillated under reduced pressure. We henceforth obtained three fractions for each essential oil: CF1, CF2, CF3, MF1, MF2, and MF3. Then, these fractions were characterized using the gas chromatography–mass spectrometry (GC-MS) technique. The results indicated that some fractions were rich in oxygenated compounds (i.e., CF2, CF3, MF2, and MF3) with concentrations ranging from 79.21% to 98.56%. Therefore, the influence of the chemical composition of the essential oils on their antifungal activity was studied. For this purpose, three food spoilage fungi were isolated, identified, and inoculated in vitro, in order to measure the antifungal activity of CEO, MEO, and their fractions. The results showed that stronger fungi growth inhibitions (FGI) (above 95%) were found in fractions with higher percentages of oxygenated compounds, especially with (−)-carvone and terpin-4-ol as the major components. Firstly, this work reveals that the free-terpenes hydrocarbons fractions obtained from MEO present higher antifungal activity than the raw essential oil against two families of fungi. Then, it suggests that the isolation of (−)-carvone (97.15 ± 5.97%) from CEO via vacuum distillation can be employed successfully to improve antifungal activity by killing fungi (FGI = 100%). This study highlights that separation under reduced pressure is a simple green method to obtain fractions or to isolate compounds with higher biological activity useful for pharmaceutical products or natural additives in formulations.


2013 ◽  
Vol 7 (20) ◽  
pp. 2245-2250 ◽  
Author(s):  
Brum Cleff Marlete ◽  
Madrid Isabel ◽  
Raquel Meinerz Ana ◽  
Carlos Arauacute jo Meireles Maacute rio ◽  
Roberto Braga de Mello Joatilde o ◽  
...  

2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
David Garcia-Rellán ◽  
Mercedes Verdeguer ◽  
Adele Salamone ◽  
Maria Amparo Blázquez ◽  
Herminio Boira

The chemical composition of essential oils from Satureja cuneifolia growing in east Spain was analyzed by GC, GC/MS. Forty-five compounds accounting for 99.1% of the total oil were identified. Camphor (47.6%), followed by camphene (13.6%) were the main compounds. Their herbicidal and antifungal activity was tested in vitro against three weeds (Amaranthus hybridus, Portulaca oleracea and Conyza canadensis) and eleven common pathogenic or saprophytic fungi (Phytophthora citrophthora, P. palmivora, Pythium litorale, Verticillium dahlia, Rhizoctonia solani, Penicillium hirsutum, Colletotrichum gloeosporioides, Phaeoacremonium aleophilum, Phaemoniella chlamydospora, Cylindrocarpon liriodendri and C. macrodidymum). The essential oil was very active against A. hybridus and C. canadensis significantly inhibiting their germination and seedling growth. Minor activity was shown against P. oleracea, depending on the concentration applied. P. palmivora, P. citrophthora and Pa. chlamydospora were the most sensitive fungi to the treatment with the essential oil, whereas R. solani showed no inhibition. Results showed that S. cuneifolia essential oil could be used for biocontrol of weeds and fungal plant diseases.


2010 ◽  
Vol 65 (11-12) ◽  
pp. 642-646 ◽  
Author(s):  
Jolanta Nazaruk ◽  
Ewa Karna ◽  
Piotr Wieczorek ◽  
Paweł Sacha ◽  
Elżbieta Tryniszewska

Antiproliferative and antifungal activities of essential oils from Erigeron acris root and herb and from Erigeron annuus herb were investigated. The cell viability assay was performed in cultured fi broblasts, cancer cell lines (MCF-7 and MDA-MBA-231), and endometrial adenocarcinoma (Ishikawa) cells as well as colon adenocarcinoma (DLD-1) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The essential oil from E. acris root showed the highest antiproliferative activity in the MCF-7 cell line with an IC50 value of 14.5 μg/mL. No effect of the essential oil on normal cells at that concentration was found. Antifungal activity against various strains of five Candida species, i.e. C. albicans, C. glabrata, C. tropicalis, C. krusei, and C. parapsilosis, was tested by the microdilution method. It was found that all examined oils can be useful as antifungal agents against the abovementioned species, but the essential oil of E. acris herb was the most active. Their minimum inhibitory concentrations (MIC) ranged from 30 to 0.4 μL/mL. The data presented suggest that essential oils from E. acris and E. annuus possess antifungal activity against Candida spp. and antiproliferative activity against breast cancer MCF-7 cells


2021 ◽  
pp. 1-4
Author(s):  
Alper Çimik ◽  

Coriander, fennel, caraway and anise species which have major characteristic specialities of Apiaceae family, have antimicrobial activities on pathogene microorganisms. Probiotic microorganisms have fundamental effects on human body and extermination of probiotics causes many diseases. In this study, it was aimed to determine investigate probiotic resistance against natural antimicrobial agents (as essential oils) compare to pathogenes in previous studies. Analysis of essential oils (Eos) from were analyzed by GC-FID and GC/MS, analysis of Eos antimicrobial and antifungal activity from were analyzed by Microdilution test (as described in CLSI). Linalool (%74.927), (E)-anethole (%68.239), carvone (%61.087) and (E)-anethole (%95.577) were found as major compounds of EOs respectively. All essential oils have antimicrobial activities on probiotic microorganisms.


Sign in / Sign up

Export Citation Format

Share Document