Deletion of TerD-domain-encoding genes: effect on Streptomyces coelicolor development

2012 ◽  
Vol 58 (10) ◽  
pp. 1221-1229 ◽  
Author(s):  
Édith Sanssouci ◽  
Sylvain Lerat ◽  
François Daigle ◽  
Gilles Grondin ◽  
François Shareck ◽  
...  

TerD-domain-encoding genes (tdd genes) are highly represented in the Streptomyces coelicolor genome. One of these, the tdd8 gene, was recently shown to have a crucial influence on growth, differentiation, and spore development of this filamentous bacterium. The investigation of the potential role of tdd genes has been extended here to tdd7 (SCO2367) and tdd13 (SCO4277). Both genes are highly expressed in bacteria grown in liquid-rich medium (tryptic soy broth). However, the deletion of these genes in S. coelicolor showed contrasting effects regarding developmental patterns, sporulation, and antibiotic production. Deletion of the tdd7 gene induced a reduction of growth in liquid medium, wrinkling of the mycelium on solid medium, and poor spore and actinorhodin production. On the other hand, deletion of the tdd13 gene did not significantly affect growth in liquid medium but induced a small colony phenotype on solid medium with abundant sporulation and overproduction of undecylprodigiosin. Although their exact functions remain undefined, the present data suggest a major involvement of TerD proteins in the proper development of S. coelicolor.

2008 ◽  
Vol 190 (20) ◽  
pp. 6903-6908 ◽  
Author(s):  
Ya-Wen Lu ◽  
Adrianna K. San Roman ◽  
Amy M. Gehring

ABSTRACT The phosphopantetheinyl transferase genes SCO5883 (redU) and SCO6673 were disrupted in Streptomyces coelicolor. The redU mutants did not synthesize undecylprodigiosin, while SCO6673 mutants failed to produce calcium-dependent antibiotic. Neither gene was essential for actinorhodin production or morphological development in S. coelicolor, although their mutation could influence these processes.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Anthony D. Covington ◽  
William R. Wise

Abstract In preparing the second edition of ‘Tanning Chemistry. The Science of Leather.’, the literature was updated and the content was revised and reviewed. Here, the new findings are presented and discussed. Notable developments include the necessary rethinking of the mechanism of sulfide unhairing because of new understanding of the aqueous chemistry of sulfide species. Revision upwards of the value of the second pKa for sulfide species ionisation means that S2− cannot exist in an aqueous medium, so the unhairing species in hair burn reactions is HS−. Although the technology remains the same, this means the mechanisms of associated reactions such as immunisation must be revised. Rawstock preservation has benefitted from studies of the potential role of materials from plants which accumulate salt, but which also contribute terpene compounds. There is also further discussion on the continuing issue of chromium (VI) in the leather industry. The application to processing of new solvents, ionic liquids and deep eutectics, is the coming technology, which offers transforming options for new chemistries and products. Renewed interest in vegetable tanning and methods of wet white processing are current trends. Also, within the topic of reagent delivery is processing in a solid medium of plastic beads. Graphical abstract


Microbiology ◽  
2003 ◽  
Vol 149 (11) ◽  
pp. 3299-3309 ◽  
Author(s):  
Yoshiko Okamoto-Hosoya ◽  
Takeshi Hosaka ◽  
Kozo Ochi

Certain mutations in the rpsL gene (encoding the ribosomal protein S12) activate or enhance antibiotic production in various bacteria. K88E and P91S rpsL mutants of Streptomyces coelicolor A3(2), with an enhanced actinorhodin production, were found to exhibit an aberrant protein synthesis activity. While a high level of this activity (as determined by the incorporation of labelled leucine) was detected at the late stationary phase in the mutants, it decreased with age of the cells in the wild-type strain. In addition, the aberrant protein synthesis was particularly pronounced when cells were subjected to amino acid shift-down, and was independent of their ability to accumulate ppGpp. Ribosomes of K88E and P91S mutants displayed an increased accuracy in protein synthesis as demonstrated by the poly(U)-directed cell-free translation system, but so did K43N, K43T, K43R and K88R mutants, which were streptomycin resistant but showed no effect on actinorhodin production. This eliminates the possibility that the increased accuracy level is a cause of the antibiotic overproduction in the K88E and P91S mutants. The K88E and P91S mutant ribosomes exhibited an increased stability of the 70S complex under low concentrations of magnesium. The authors propose that the aberrant activation of protein synthesis caused by the increased stability of the ribosome is responsible for the remarkable enhancement of antibiotic production in the K88E and P91S mutants.


2007 ◽  
Vol 8 (8) ◽  
pp. R161 ◽  
Author(s):  
Andrew Hesketh ◽  
Wenqiong Chen ◽  
Jamie Ryding ◽  
Sherman Chang ◽  
Mervyn Bibb

2011 ◽  
Vol 77 (5) ◽  
pp. 1872-1877 ◽  
Author(s):  
Seon-Hye Kim ◽  
Han-Na Lee ◽  
Hye-Jin Kim ◽  
Eung-Soo Kim

ABSTRACTThrough microarray analysis of an antibiotic-downregulator-deletedStreptomyces coelicolorΔwblAΔSCO1712 mutant, 28wblA- and SCO1712-dependent genes were identified and characterized. Among 14wblA- and SCO1712-independent genes, a carbon flux regulating 6-phosphofructokinase SCO5426 was additionally disrupted in the ΔwblAΔSCO1712 mutant and further stimulated actinorhodin production inS. coelicolor, implying that both regulatory and precursor flux pathways could be synergistically optimized for antibiotic production.


2006 ◽  
Vol 188 (13) ◽  
pp. 4952-4961 ◽  
Author(s):  
Natsumi Saito ◽  
Jun Xu ◽  
Takeshi Hosaka ◽  
Susumu Okamoto ◽  
Hiroyuki Aoki ◽  
...  

ABSTRACT Disruption of eshA, which encodes a 52-kDa protein that is produced late during the growth of Streptomyces coelicolor A3(2), resulted in elimination of actinorhodin production. In contrast, disruption of eshB, a close homologue of eshA, had no effect on antibiotic production. The eshA disruptant accumulated lower levels of ppGpp than the wild-type strain accumulated. The loss of actinorhodin production in the eshA disruptant was restored by expression of a truncated relA gene, which increased the ppGpp level to the level in the wild-type strain, indicating that the reduced ppGpp accumulation in the eshA mutant was solely responsible for the loss of antibiotic production. Antibiotic production was also restored in the eshA mutant by introducing mutations into rpoB (encoding the RNA polymerase β subunit) that bypassed the requirement for ppGpp, which is consistent with a role for EshA in modulating ppGpp levels. EshA contains a cyclic nucleotide-binding domain that is essential for its role in triggering actinorhodin production. EshA may provide new insights and opportunities to unravel the molecular signaling events that occur during physiological differentiation in streptomycetes.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Olga Tsypik ◽  
Roman Makitrynskyy ◽  
Agnieszka Bera ◽  
Lijiang Song ◽  
Wolfgang Wohlleben ◽  
...  

Here we report functional characterization of the Streptomyces coelicolor M145 gene SCO1678, which encodes a GntR-like regulator of the FadR subfamily. Bioinformatic analysis suggested that SCO1678 is part of putative operon (gnt) involved in gluconate metabolism. Combining the results of SCO1678 knockout, transcriptional analysis of gnt operon, and Sco1678 protein-DNA electromobility shift assays, we established that Sco1678 protein controls the gluconate operon. It does so via repression of its transcription from a single promoter located between genes SCO1678 and SCO1679. The knockout also influenced, in a medium-dependent manner, the production of secondary metabolites by S. coelicolor. In comparison to the wild type, on gluconate-containing minimal medium, the SCO1678 mutant produced much less actinorhodin and accumulated a yellow-colored pigment, likely to be the cryptic polyketide coelimycin. Possible links between gluconate metabolism and antibiotic production are discussed.


2012 ◽  
Vol 58 (10) ◽  
pp. 1195-1201 ◽  
Author(s):  
Angela Forero ◽  
Mauricio Sánchez ◽  
Adán Chávez ◽  
Beatriz Ruiz ◽  
Romina Rodríguez-Sanoja ◽  
...  

Streptomyces coelicolor mutants resistant to 2-deoxyglucose are insensitive to carbon catabolite repression (CCR). Total reversion to CCR sensitivity is observed by mutant complementation with a DNA region harboring both glucose kinase glkA gene and the sco2127 gene. The sco2127 is located upstream of glkA and encodes a putative protein of 20.1 kDa. In S. coelicolor, actinorhodin production is subject to glucose repression. To explore the possible involvement of both SCO2127 and glucose kinase (Glk) in the glucose sensitivity of actinorhodin production, this effect was evaluated in a wild-type S. coelicolor A3(2) M145 strain and a sco2127 null mutant (Δsco2127) derived from this wild-type strain. In comparison with strain M145, actinorhodin production by the mutant was insensitive to glucose repression. Under repressive conditions, only minor differences were observed in glucose utilization and Glk production between these strains. SCO2127 was detected mainly during the first 36 h of fermentation, just before the onset of antibiotic production, and its synthesis was not related to a particular carbon source. The glucose sensitivity of antibiotic production was restored to wild-type phenotype by transformation with an integrative plasmid containing sco2127. Our results support the hypothesis that SCO2127 is a negative regulator of actinorhodin production and suggest that the effect is independent of Glk.


2020 ◽  
Author(s):  
Svetlana Alexeeva ◽  
Yue Liu ◽  
Jingjie Zhu ◽  
Joanna Kaczorowska ◽  
Thijs R. H. M. Kouwen ◽  
...  

Abstract Background Our previous study on a model microbial community originating from artisanal cheese fermentation starter revealed that bacteriophages not only co-exist with bacteria but also are highly abundant. To gain more insight into the potential role of prophages in the microbial community, we analysed the genomic content of 6 phage crops released by different strains in the starter culture, performed comparative genome analysis, and demonstrated their roles in phage defence of respective hosts. Results The identified prophages belong to three different subgroups of the Siphoviridae P335 phage group. Remarkably, most analysed prophages show disruptions in different tail encoding genes, resulting in a common tailless phenotype. Furthermore, a number of potentially beneficial features for the host carried by prophages were identified. The prophages carry up to 3 different phage defence systems per genome that are functional in protecting the host from foreign phage infection. Conclusion We suggest that the presumably defective prophages are a result of bacteria-phage coevolution and convey advantages to host bacteria; knowledge on the ecological role of such (defective) prophages may contribute to a refreshed look in strain selection criteria in (dairy) industry.


2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Zhong Xu ◽  
Yuanyuan Li ◽  
Yemin Wang ◽  
Zixin Deng ◽  
Meifeng Tao

ABSTRACTStreptomycesspecies are important antibiotic-producing organisms that tightly regulate their antibiotic production. Actinorhodin is a typical antibiotic produced by the model actinomyceteStreptomyces coelicolor. To discover the regulators of actinorhodin production, we constructed a library of 50,000 independent mutants with hyperactive Tn5transposase-based transposition systems. Five hundred fifty-one genes were found to influence actinorhodin production in 988 individual mutants. Genetic complementation suggested that most of the insertions (76%) were responsible for the changes in antibiotic production. Genes involved in diverse cellular processes such as amino acid biosynthesis, carbohydrate metabolism, cell wall homeostasis, and DNA metabolism affected actinorhodin production. Genome-wide mutagenesis can identify novel genes and pathways that impact antibiotic levels, potentially aiding in engineering strains to optimize the production of antibiotics inStreptomyces.IMPORTANCEPrevious studies have shown that various genes can influence antibiotic production inStreptomycesand that intercommunication between regulators can complicate antibiotic production. Therefore, to gain a better understanding of antibiotic regulation, a genome-wide perspective on genes that influence antibiotic production was needed. We searched for genes that affected production of the antibiotic actinorhodin using a genome-wide gene disruption system. We identified 551 genes that altered actinorhodin levels, and more than half of these genes were newly identified effectors. Some of these genes may be candidates for engineeringStreptomycesstrains to improve antibiotic production levels.


Sign in / Sign up

Export Citation Format

Share Document