Comparative fate of glyphosate and triclopyr herbicides in the forest floor and mineral soil of an Acadian forest regeneration site

2000 ◽  
Vol 30 (11) ◽  
pp. 1808-1816 ◽  
Author(s):  
Dean G Thompson ◽  
Douglas G Pitt ◽  
Teresa M Buscarini ◽  
Bozena Staznik ◽  
David R Thomas

Following applications of three different salt formulations of glyphosate (Vision®, Touchdown®, and Mon14420) and an ester formulation of triclopyr (Release®) to an Acadian forest regeneration site in New Brunswick, Canada, the fate and persistence of herbicide residues in the forest floor and underlying mineral soil were investigated. Within 14 days of treatment, maximal residue levels (average 8.3 µg·g dry mass–1) were observed in the forest floor matrix following application of the glyphosate formulations, with higher values (45.7 µg·g dry mass–1) observed for triclopyr. Residue maxima in the underlying mineral soil were, on average, 5.7-fold lower than those in the forest floor. In both matrices, glyphosate residues declined exponentially with time, irrespective of the formulation applied. Among the glyphosate treatments no significant differences (p = 0.16, p = 0.97, for forest floor and mineral soil respectively) were observed in the estimated times to 50% dissipation (DT50). Overall, average DT50 values for glyphosate were estimated as 12 ± 2 and 10 ± 3 days for the forest floor matrix and mineral soil, respectively. Triclopyr residues, particularly in the forest floor, were characterized by a series of transient increases, possibly reflecting temporally varying inputs from dew, rainwash, or litter fall from surrounding treated vegetation. Triclopyr residues also dissipated with time, with approximate DT50 values ranging from 39 to 69 days in the forest floor and mineral soil, respectively.

2008 ◽  
Vol 54 (No. 8) ◽  
pp. 377-387
Author(s):  
P. Sah S ◽  
R. Brumme ◽  
N. Lamersdorf

We analysed stable isotopes of N in a spruce forest under ambient rainfall (no further manipulation of the atmospheric input) and clean rain application (10 years of reduced inorganic N- and acid-constituent input). The objectives of the study were to assess whether or not the natural <sup>15</sup>N abundance would function as an indicator for the N-status of our forest ecosystems. For this purpose, natural <sup>15</sup>N abundance values were measured in needles, litter fall, roots, soil, bulk precipitation, throughfall and soil water of both plots. In the bulk precipitation and throughfall the &delta;<sup>15</sup>N values of NO<sub>3</sub>-N were in the range reported by other studies (–16 to + 23‰). In both plots, the throughfall was greatly depleted of <sup>15</sup>N compared to the bulk precipitation and this was attributed to nitrification in the canopy leaves, leading to &delta;<sup>15</sup>N-depleted nitrate production in the leaves that leaches down the soil surface. Nitrate in seepage water showed a general increase in &delta;<sup>15</sup>N values when it passes through the upper mineral soil (10 cm soil depth) and infiltrates into deeper mineral soil horizons (100 cm soil depth), similar to the &delta;<sup>15</sup>N enrichment of total nitrogen in the mineral soil. We observed <sup>15</sup>N depletion in both green needles and litter fall at the clean rain plot, compared to the N-saturated control plot. We assumed it to be due to increased mycorrhizal N-uptake under N limited, i.e. clean rain conditions which are indicated by relatively lower N concentrations of green needles. With respect to the vertical gradient of the <sup>15</sup>N abundance in the forest floor, both plots differ from each other, showing an untypical peak of &delta;<sup>15</sup>N depletion in the humus layer, which is more pronounced at the control plot. In contrast to the mineral soil where mineralisation is a dominant process for fractionation we attribute the &delta;<sup>15</sup>N pattern in the forest floor to additional processes like litter input and immobilisation. We conclude that the &delta;<sup>15</sup>N natural abundance analysis is helpful for interpreting the N-status of forest ecosystems but further research is needed especially with respect to the soil-root interface.


1996 ◽  
Vol 26 (7) ◽  
pp. 1266-1272 ◽  
Author(s):  
W.Z. Huang ◽  
J.J. Schoenau

The purpose of this study was to characterize the quantity, distribution, and variance of water-soluble organic C (WSOC) in a soil under trembling aspen (Populustremuloides Michx.) in the southern boreal forest of Canada. WSOC was determined monthly from May to October 1994 in the forest floor horizons (L, F, H) and mineral soil (Ae) of an aspen stand in Prince Albert National Park, Saskatchewan. The concentration of WSOC varied considerably with profile depth, but varied little among the slope positions and aspects. The L horizon had the highest WSOC concentration (425–8690 mg•kg−1 ovendried soil), followed by the F, H, and Ae horizons. The concentration of WSOC in the Ae horizon was significantly related to the concentration in forest floor horizons above. Water-soluble organic C in the Ae horizon likely was derived from the overlying organic layer by leaching. In a laboratory incubation, the rate of WSOC release (the net result of release and uptake) during incubation decreased continuously over time, but in the field, the rate of WSOC release decreased slightly early in the growing season, but increased later in the season as new litter fall reached the forest floor. This indicates that litter fall is a major factor in the replenishment of WSOC in aspen forest stands.


1994 ◽  
Vol 24 (11) ◽  
pp. 2251-2262 ◽  
Author(s):  
Dean G. Thompson ◽  
D. G. Pitt ◽  
T. Buscarini ◽  
B. Staznik ◽  
D. R. Thomas ◽  
...  

Initial deposition and subsequent fate of herbicide residues in sugar maple (Acersaccharum Marsh.) foliage were quantified following applications of three different formulations of glyphosate (VISION®, TOUCHDOWN®, MON14420) and one formulation of triclopyr ester (RELEASE®) in a comparative field study. Maximum initial residues were 529, 773, 777, and 1630 mg of acid equivalent per kilogram dry mass, respectively. Initial foliar residues were dependent upon application rate (r2 = 0.63 to 0.87) and increased by a similar factor (233 to 313 mg•kg−1) for each kilogram per hectare applied, irrespective of formulation type. Foliar residues dissipated following a negative exponential pattern with time, rates of which varied with initial concentration. Mean times to 50% dissipation were 2 days for all glyphosate formulations, 1.5 days for triclopyr ester, and 4 days for triclopyr acid. Mean times to 90% dissipation were <16 days for glyphosate formulations, 9 days for triclopyr ester, and 33 days for triclopyr acid. Multivariate analyses of intercept and rate parameter estimates indicated significant (p = 0.02) differences in dissipation patterns among treatments. Orthogonal contrasts confirmed a priori hypotheses that glyphosate residue dissipation was independent of the salt formulation applied, and that triclopyr ester dissipated faster than either glyphosate (p = 0.004) or triclopyr acid residues (p = 0.07). Results are considered in terms of the exposure and resultant potential toxicity to forest songbirds inhabiting or foraging in treated hardwood canopies.


1990 ◽  
Vol 20 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Jeremy S. Fried ◽  
James R. Boyle ◽  
John C. Tappeiner II ◽  
Kermit Cromack Jr.

Soil chemical and physical properties, forest floor weights, nutrient content and turnover rates, and litter fall weights and nutrient content under bigleaf maple (Acermacrophyllum Pursh) and Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco var. menziesii) were compared on five sites on the eastern margin of the Oregon Coast Range. Litter fall weight and nutrient content were significantly greater under maple on every site for every macronutrient and for most micronutrients. Forest floor biomass and nutrient content were extremely variable, much more so than litter fall, and there were no consistent differences between the two species. However, turnover rates for forest floor biomass and nutrients were significantly faster under maple for every nutrient at every site. Bulk density of mineral soil was also highly variable with significant differences at only two sites. Soil under maple was consistently higher in nitrogen, and less consistently, in potassium. There were no consistent trends in amounts of calcium, magnesium, or phosphorus. Soil organic carbon content under maple was significantly greater than under Douglas-fir on four of five sites. These differences may result from the more rapid turnover of forest floors under maple trees.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 573
Author(s):  
Florian Achilles ◽  
Alexander Tischer ◽  
Markus Bernhardt-Römermann ◽  
Ines Chmara ◽  
Mareike Achilles ◽  
...  

High N depositions of past decades brought changes to European forests including impacts on forest soil nutrition status. However, the ecosystem responses to declining atmospheric N inputs or moderate N depositions attracted only less attention so far. Our study investigated macronutrient (N, S, Ca2+, Mg2+, K+) pools and fluxes at forest conversion sites over 80 years old in Central Germany with European beech (so-called “Green Eyes” (GE)). The GE are embedded in large spruce and pine stands (coniferous stands: CS) and all investigated forest stands were exposed to moderate N deposition rates (6.8 ± 0.9 kg ha−1 yr−1) and acidic soil conditions (pHH2O < 4.7). Since the understanding of forest soil chemical and macronutrient status is essential for the evaluation of forest conversion approaches, we linked patterns in water-bound nutrient fluxes (2001–2018) and in predicted macronutrient storage in the herbaceous and tree layer to patterns in litter fall (2016–2017) and in forest floor and mineral soil macronutrient stocks at GE and CS assessed in 2018. Our results exhibited 43% (Nt) and 21% (S) higher annual throughfall fluxes at CS than at GE. Seepage water at 100 cm mineral soil depth (2001–2018) of CS is characterized by up to fivefold higher NO3− (GE: 2 ± 0.7 µmolc L−1; CS: 9 ± 1.4 µmolc L−1) and sevenfold higher SO42− (GE: 492 ± 220 µmolc L−1; CS: 3672 ± 2613 µmolc L−1) concentrations. High base cation (∑ Ca2+, Mg2+, K+) concentrations in CS mineral soil seepage water (100 cm depth: 2224 ± 1297 µmolc L−1) show significant positive correlations with SO42−. Tree uptake of base cations at GE is associated especially with a Ca2+ depletion from deeper mineral soil. Foliar litter fall turns out to be the main pathway for litter base cation return to the topsoil at GE (>59%) and CS (>66%). The litter fall base cation return at GE (59 ± 6 kg ha−1 yr−1) is almost twice as large as the base cation deposition (30 ± 5 kg ha−1 yr−1) via throughfall and stemflow. At CS, base cation inputs to the topsoil via litter fall and depositions are at the same magnitude (24 ± 4 kg ha−1 yr−1). Macronutrient turnover is higher at GE and decomposition processes are hampered at CS maybe through higher N inputs. Due to its little biomass and only small coverage, the herbaceous layer at GE and CS do not exert a strong influence on macronutrient storage. Changes in soil base cation pools are tree species-, depth- and might be time-dependent, with recently growing forest floor stocks. An ongoing mineral soil acidification seems to be related to decreasing mineral soil base cation stocks (through NO3− and especially SO42− leaching as well as through tree uptake).


1997 ◽  
Vol 75 (2) ◽  
pp. 332-335 ◽  
Author(s):  
Michael A. Setterington ◽  
Daniel M. Keppie

Relationships between external cone characteristics (length, width, wet and dry mass), cone quality (total seed mass as a proportion of cone mass, total number of seeds per cone, total seed mass per cone), and number of cones in caches were evaluated for caches of jack pine (Pinus banksiana) cones belonging to red squirrels (Tamiasciurus hudsonicus) in two plantations in southern New Brunswick. Cone length and mass were good predictors of the total number of seeds per cone and total seed mass per cone. Length accounted for a small proportion of the variance of total seed mass as a proportion of cone mass. There was no relationship between the number of seeds or total seed mass per cone and the number of cones per cache.


Author(s):  
Alex Noel ◽  
Jules Comeau ◽  
Salah-Eddine El Adlouni ◽  
Gaetan Pelletier ◽  
Marie-Andrée Giroux

The recruitment of saplings in forest stands into merchantable stems is a very complex process, thus making it challenging to understand and predict. The recruitment dynamics in the Acadian Forest Region of New Brunswick are not well known or documented. Our objective was to draw an inference from existing large scale routine forest inventories as to the different dynamics behind the recruitment from the sapling layer into the commercial tree size layer in terms of density and occurrence of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) following harvesting, by looking at many factors on a wide range of spatial and temporal scales using models. Results suggest that the variation in density and probability of occurrence is best explained by the intensity of silvicultural treatment, by the merchantable stem density in each plot, and by the proportion of merchantable basal area of each group of species. The number of recruits of sugar maple and yellow birch stems tend be higher when time since last treatment increases, when mid to low levels of silvicultural treatment intensity were implemented, and within plots having intermediate levels of merchantable stem density. Lastly, our modeling efforts suggest that the probability of occurrence and density of recruitment of both species tend to increase while its share of merchantable basal area increases.


2002 ◽  
Vol 32 (2) ◽  
pp. 344-352 ◽  
Author(s):  
P W Clinton ◽  
R B Allen ◽  
M R Davis

Stemwood production, N pools, and N availability were determined in even-aged (10, 25, 120, and >150-year-old) stands of a monospecific mountain beech (Nothofagus solandri var. cliffortioides (Hook. f.) Poole) forest in New Zealand recovering from catastrophic canopy disturbance brought about by windthrow. Nitrogen was redistributed among stemwood biomass, coarse woody debris (CWD), the forest floor, and mineral soil following disturbance. The quantity of N in stemwood biomass increased from less than 1 kg/ha in seedling stands (10 years old) to ca. 500 kg/ha in pole stands (120 years old), but decreased in mature stands (>150 years old). In contrast, the quantity of N stored in CWD declined rapidly with stand development. Although the mass of N stored in the forest floor was greatest in the pole stands and least in the mature stands, N availability in the forest floor did not vary greatly with stand development. The mass of N in the mineral soil (0–100 mm depth) was also similar for all stands. Foliar N concentrations, net N mineralization, and mineralizable N in the mineral soil (0–100 mm depth) showed similar patterns with stage of stand development, and indicated that N availability was greater in sapling (25 years old) and mature stands than in seedling and pole stands. We conclude that declining productivity in older stands is associated more with reductions in cation availability, especially calcium, than N availability.


2013 ◽  
Vol 89 (04) ◽  
pp. 512-524 ◽  
Author(s):  
Martin Béland ◽  
Bruno Chicoine

We examined applicability of various partial cutting systems in order to regenerate tolerant hardwood stands dominated by sugar maple (Acer saccarhum), American beech (Fagus grandifolia) and yellow birch (Betula alleghaniensis) on northern New Brunswick J.D. Irving Ltd. freehold land. Sampling of 1065 one-m2 plots in 31 stands managed by selection cutting, shelterwood method and strip or patch cutting and in six control stands allowed a 15-year retrospective study of natural regeneration in stands of low residual densities and with minimal soil disturbance and no control of competing vegetation. Beech regeneration was most abundant in the patch cuts, yellow birch in shelterwood stands and sugar maple in the selection system areas. Results suggest that initial stand conditions influence the composition of the regeneration more than the prescribed treatment. At the stand scale (a few hectares), sugar maple recruitment was positively influenced by its proportion in the initial stand, and negatively by the cover of herbs and shrubs. Yellow birch regeneration was mainly affected by shrub competition. At the plot (1 m2) scale, mineral soil and decayed wood substrates and ground-level transmitted light were determinant factors for yellow birch regeneration. Beech-dominated stands were likely to regenerate to beech. A dense beech sucker understory was promoted in harvested patches. Areas with dense understory of American beech, shrubs, or herbs require site preparation to reduce interference either before or at the time of partial cutting. Shelterwood seed cutting and selection cutting should leave a residual of 12 m2/ha and 17 m2/ha respectively in seed trees uniformly distributed.


2019 ◽  
Vol 34 ◽  
pp. 41-66 ◽  
Author(s):  
Raffaella Balestrini ◽  
Carlo Andrea Delconte ◽  
Andrea Buffagni ◽  
Alessio Fumagalli ◽  
Michele Freppaz ◽  
...  

A number of studies have reported decreasing trends of acidifying and N deposition inputs to forest areas throughout Europe and the USA in recent decades. There is a need to assess the responses of the ecosystem to declining atmospheric pollution by monitoring the variations of chemical species in the various compartments of the forest ecosystem on a long temporal scale. In this study, we report on patterns and trends in throughfall deposition concentrations of inorganic N, dissolved organic N (DON) and C (DOC) over a 20-year (1995–2015) period in the LTER site -Val Masino (1190 m a.s.l.), a spruce forest, in the Central Italian Alps. The same chemical species were studied in the litter floor leachates and mineral soil solution, at three different depths (15, 40 and 70 cm), over a 10-year period (2005–2015). Inorganic N concentration was drastically reduced as throughfall and litter floor leachates percolated through the topsoil, where the measured mean values (2 µeq L-1) were much lower than the critical limits established for coniferous stands (14 µeq L-1). The seasonal temperature dependence of throughfall DOC and DON concentration suggests that the microbial community living on the needles was the main source of dissolved organic matter. Most of DOC and DON infiltrating from the litter floor were retained in the mineral soil. The rainfall amount was the only climatic factor exerting a control on DOC and N compounds in throughfall and forest floor leachates over a decadal period. Concentration of SO4 and NO3 declined by 50% and 26% respectively in throughfall deposition. Trends of NO3 and SO4 in forest floor leachates and mineral soil solution mirrored declining depositions. No trends in both DON and DOC concentration and in DOC/DON ratio in soil solutions were observed. These outcomes suggest that the declining NO3 and SO4 atmospheric inputs did not influence the dynamic of DON and DOC in the Val Masino forest. The results of this study are particularly relevant, as they are based on a comprehensive survey of all the main compartments of the forest ecosystem. Moreover, this kind of long-term research has rarely been carried out in the Alpine region.


Sign in / Sign up

Export Citation Format

Share Document