The utility of the two-pass harvesting system: an analysis using the ecosystem simulation model FORECAST

2002 ◽  
Vol 32 (6) ◽  
pp. 1071-1079 ◽  
Author(s):  
Clive Welham ◽  
Brad Seely ◽  
Hamish Kimmins

The ecosystem model FORECAST was used to simulate the yield potential in Saskatchewan mixedwoods of the two-pass harvesting system. The simulated two-pass stand consisted of an overstory population of pure trembling aspen (Populus tremuloides Michx.) with a white spruce (Picea glauca (Moench) Voss) understory. The aspen was removed at year 60, and yields of the understory spruce and resprouting aspen were simulated for 80 years thereafter. The two-pass simulations were compared with two simulated conventional harvesting systems. The first system consisted of a single final harvest at year 140. In the second system, a clearcut was conducted at year 60. White spruce was then planted in the subsequent year at 400, 600, or 800 stems/ha, and aspen also permitted to resprout. Growth was then simulated for a further 80 years. FORECAST projections indicated that the two-pass system might be effective for releasing the white spruce understory, achieving at least a twofold gain in spruce volume relative to conventional methods. Furthermore, total volumes exceeded those derived from the unmanaged stand, while second rotation yields of aspen declined with spruce understory density. These simulations suggest the two-pass harvesting system has strong potential as a tool for mixedwood management.

2007 ◽  
Vol 22 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Ryan J. Klos ◽  
G. Geoff Wang ◽  
Qing-Lai Dang ◽  
Ed W. East

Abstract Kozak's variable exponent taper equation was fitted for balsam poplar (Populus balsamifera L.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), and jack pine (Pinus banksiana Lamb.) in Manitoba. Stem taper variability between two ecozones (i.e., Boreal Shield and Boreal Plains) were tested using the F-test. Regional differences were observed for trembling aspen, white spruce, and jack pine, and for those species, separate ecozone-specific taper equations were developed. However, the gross total volume estimates using the ecozone-specific equations were different from those of the provincial equations by only 2 percent. Although the regional difference in stem form was marginal within a province, a difference of approximately 7 percent of gross total volume estimation was found when our provincial taper equations were compared with those developed in Alberta and Saskatchewan. These results suggest that stem form variation increases with spatial scale and that a single taper equation for each species may be sufficient for each province.


2014 ◽  
Vol 44 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Derek F. Sattler ◽  
Philip G. Comeau ◽  
Alexis Achim

Radial patterns of modulus of elasticity (MOE) were examined for white spruce (Picea glauca (Moench) Voss) and trembling aspen (Populus tremuoides Michx.) from 19 mature, uneven-aged stands in the boreal mixedwood region of northern Alberta, Canada. The main objectives were to (1) evaluate the relationship between pith-to-bark changes in MOE and cambial age or distance from pith; (2) develop species-specific models to predict pith-to-bark changes in MOE; and (3) to test the influences of radial growth, relative vertical height, and tree slenderness (tree height/DBH) on MOE. For both species, cambial age was selected as the best explanatory variable with which to build pith-to-bark models of MOE. For white spruce and trembling aspen, the final nonlinear mixed-effect models indicated that an augmented rate of increase in MOE occurred with increasing vertical position within the tree. For white spruce trees, radial growth and slenderness were found to positively influence maximum estimated MOE. For trembling aspen, there was no apparent effect of vertical position or radial growth on maximum MOE. The results shed light on potential drivers of radial patterns of MOE and will be useful in guiding silvicultural prescriptions.


1999 ◽  
Vol 75 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Rongzhou Man ◽  
Victor J. Lieffers

In boreal mixedwood forests, aspen (Populus tremuloides) and white spruce (Picea glauca) commonly grow in mixture. These species may avoid competition through differential shade tolerance, physical separation of canopies, phenological differences, successional separation, and differences in soil resource utilization. Aspen may also be able to positively affect the growth of white spruce by improving litter decomposition and nutrient cycling rates, controlling grass and shrub competition, ameliorating environmental extremes, and reducing pest attack. These positive relationships likely make mixed-species stands more productive than pure stands of the same species. The evidence regarding the productivity of pure versus mixed aspen/white spruce stands in natural unmanaged forests is examined in this paper. Key words: Tree mixture; productivity; boreal mixedwoods; aspen; white spruce


2006 ◽  
Vol 36 (7) ◽  
pp. 1818-1833 ◽  
Author(s):  
Daniel A MacIsaac ◽  
Philip G Comeau ◽  
S Ellen Macdonald

This study assessed the dynamics of gap development in postharvest regeneration in five stands in northwestern Alberta dominated by trembling aspen (Populus tremuloides Michx.). The pattern of gap development over time was determined from analysis of air photographs taken preharvest and 1, 4, 10, and 12 years postharvest. The area of each stand covered by gaps increased after harvest because of the addition of harvest-related gaps over and above those that had been present prior to harvest. The blocks we studied had a combined gap area of up to 29% of stand area 12 years postharvest. We measured regeneration characteristics, microsite, soil, light, and browse conditions in 30 aspen regeneration gaps (gaps in regeneration that were not gaps preharvest and were not due to obvious harvest-related disturbance) 14 years following harvest. Although deciduous trees within postharvest regeneration gaps were the same age as those outside (i.e., in a fully stocked matrix of newly established even-aged aspen stems), they were often suppressed, with significantly lower density and growth. Within the 14-year-old postharvest regenerating aspen stands, aspen height varied from 1 to 11 m; this substantial variability appeared to be largely due to the influence of browsing. There was little evidence of ongoing regeneration within postharvest regeneration gaps, indicating that these gaps will probably persist over time. This may impact future deciduous stocking and volume. It is unknown what may have initiated the formation of these gaps, although results suggest that they are not due to edaphic conditions or disease in the preharvest stands. There is evidence that bluejoint (Calamagrostis canadensis (Michx.) Beauv.) cover and browsing are important factors in the maintenance of postharvest regeneration gaps. The spatial heterogeneity resulting from gaps could be advantageous, however, either as part of ecosystem-based management emulating natural disturbance or as a template for mixedwood management, where white spruce (Picea glauca (Moench) Voss) are established in gaps.


2002 ◽  
Vol 80 (6) ◽  
pp. 684-689 ◽  
Author(s):  
Simon M Landhäusser ◽  
Tawfik M Muhsin ◽  
Janusz J Zwiazek

Low soil temperatures, common during the growing season in northern forests, have the potential to impede plant growth. In this study, water uptake, water relations, and growth characteristics were examined in aspen (Populus tremuloides) and white spruce (Picea glauca) seedlings that were inoculated with ectomycorrhizal fungi and grown at 20°C daytime air temperatures and low soil temperatures of 4°C and 8°C. Mycorrhizal associations had little effect on root and shoot biomass at both soil temperatures. Root hydraulic conductance (Kr) was higher in both mycorrhizal plant species compared to nonmycorrhizal plants, but there was no soil temperature effect on Kr in either species. Mycorrhizae also increased shoot water potential (Ψw) in Populus tremuloides but had no effect on Ψw in Picea glauca. The increases in Kr and Ψw were not reflected by changes in stomatal conductance (gs) and transpiration rates (E), suggesting that the reduction of water flow in seedlings exposed to low soil temperature was not likely the factor limiting gs in both plant species.Key words: boreal forest, root hydraulic conductance, root growth, stomatal conductance, water uptake.


2006 ◽  
Vol 36 (6) ◽  
pp. 1597-1609 ◽  
Author(s):  
Vernon S Peters ◽  
S Ellen Macdonald ◽  
Mark RT Dale

The timing of white spruce regeneration in aspen (Populus tremuloides Michx.) – white spruce (Picea glauca (Moench) Voss) boreal mixedwood stands is an important factor in stand development. We examined boreal mixedwood stands representing a 59-year period of time since fire and determined (1) whether and when a delayed regeneration period of white spruce occurred, (2) whether the relative abundance of initial (<20 years) versus delayed (≥20 years postfire) regeneration is related to seed availability at the time of the fire, and (3) what are the important regeneration substrates for initial versus delayed regeneration. Initial regeneration occurred primarily on mineral soil or humus, while delayed regeneration established primarily on logs and peaked 38–44 years after fire. Of the 20 stands investigated, seven were dominated by initial regeneration, six were dominated by delayed regeneration, and seven were even mixtures of both. The dominance of a site by initial or delayed regeneration could not be simply explained by burn timing relative to mast years or distance to seed source; our results suggested that fire severity and the competitive influence of initial regeneration on delayed regeneration were important at fine scales. Based on our results we describe several possible postfire successional pathways for boreal mixedwood forests.


2008 ◽  
Vol 38 (7) ◽  
pp. 1817-1828 ◽  
Author(s):  
Cosmin D. Man ◽  
Philip G. Comeau ◽  
Douglas G. Pitt

The influence of aspen ( Populus tremuloides Michx.) and herbaceous (forb and grass) vegetation on resource availability and white spruce ( Picea glauca (Moench) Voss) growth were examined as part of a long-term experiment established in 2002 near Whitecourt, Alberta, Canada. During the 2005 growing season, we examined the effects of herbicide treatments designed to control only woody (triclopyr ester) or both woody and herbaceous (glyphosate) vegetation on leaf area index (LAI) of both the woody and herbaceous components and relationships among LAI and light, soil moisture, air temperature, soil temperature, nitrogen availability, and spruce growth. Treatments reduced LAI and increased light, soil nitrogen availability, and white spruce growth. There were no apparent effects of the treatments on soil moisture in 2005. Both the woody and herb–grass layers appear to be competing for light and soil nitrogen in this young plantation. Controlling only woody vegetation resulted in an increase in herbaceous and total LAI (dominated by the grass Calamagrostis canadensis (Michx.) Beauv.). Spot treatment, involving control of vegetation within a 2 m radius of spruce seedlings while leaving 1 m of untreated ground between treated spots, may be a promising alternative to classical broadcast treatments for establishing spruce in a mixedwood stand. Spot treatments provided good growing conditions and reduced exposure of spruce seedlings to summer and winter frost injury during the first 3 years after planting.


2005 ◽  
Vol 81 (4) ◽  
pp. 559-574 ◽  
Author(s):  
Philip G Comeau ◽  
Richard Kabzems ◽  
John McClarnon ◽  
Jean L Heineman

We describe a range of approaches for managing boreal mixedwood stands composed of trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench) Voss) in British Columbia and Alberta. Successful management of these complex forests requires a combination of well-defined objectives at the landscape level and flexible planning at the stand level. A variety of management strategies must be applied concurrently across the landscape to ensure that the natural mix of forest types and structural diversity is maintained. Selected approaches are discussed with regard to their suitability to particular stand conditions and sets of objectives, the types of tending and harvesting activities required, expected outcomes, and costs. The three approaches discussed are: 1) creation and management of two-storied intimate mixtures; 2) creation of a single-storied mixture of aspen and white spruce; and, 3) creation of a mosaic of discrete patches of each species. Key words: boreal mixedwood management, mixedwood silvicultural systems, aspen, white spruce, planning


1998 ◽  
Vol 76 (2) ◽  
pp. 181-188 ◽  
Author(s):  
James D Stewart ◽  
Edward H Hogg ◽  
Patrick A Hurdle ◽  
Kenneth J Stadt ◽  
Peter Tollestrup ◽  
...  

The dispersal of white spruce (Picea glauca (Moench) Voss) seed through trembling aspen (Populus tremuloides Michx.) forests was investigated by releasing artificial seed (confetti) from different heights on a meteorological tower, and, secondly, by observing the distribution of spruce regeneration along transects radiating out from small isolated patches of mature spruce seed trees. Mean dispersal distance of confetti increased with height of release. Before leaf fall of the aspen canopy, most confetti landed close to and in all directions around the tower. After leaf fall, no confetti was observed upwind from the tower and the mean dispersal distance increased, with peak densities occurring at a distance of 15 m in the downwind direction. The rate of decrease in regeneration density with distance from patches of mature, seed-bearing white spruce was much less than that observed during confetti release experiments. Furthermore, regeneration densities were significantly greater in the prevailing downwind direction (toward the east). The results indicate that stronger than average winds, primarily from the northwest, west, and southwest, play a major role in the dispersal of white spruce seed. Simulation modelling of the observed distribution of regeneration suggests that long-distance (>250 m) dispersal may be an important mechanism for the persistence of white spruce in the fire-prone boreal forest of western Canada.Key words: seed dispersal, boreal forest, mixedwood, wind dispersal, artificial seed.


Sign in / Sign up

Export Citation Format

Share Document