Potential changes in monthly fire risk in the eastern Canadian boreal forest under future climate change

2009 ◽  
Vol 39 (12) ◽  
pp. 2369-2380 ◽  
Author(s):  
Héloïse Le Goff ◽  
Mike D. Flannigan ◽  
Yves Bergeron

The main objective of this paper is to evaluate whether future climate change would trigger an increase in the fire activity of the Waswanipi area, central Quebec. First, we used regression analyses to model the historical (1973–2002) link between weather conditions and fire activity. Then, we calculated Fire Weather Index system components using 1961–2100 daily weather variables from the Canadian Regional Climate Model for the A2 climate change scenario. We tested linear trends in 1961–2100 fire activity and calculated rates of change in fire activity between 1975–2005, 2030–2060, and 2070–2100. Our results suggest that the August fire risk would double (+110%) for 2100, while the May fire risk would slightly decrease (–20%), moving the fire season peak later in the season. Future climate change would trigger weather conditions more favourable to forest fires and a slight increase in regional fire activity (+7%). While considering this long-term increase, interannual variations of fire activity remain a major challenge for the development of sustainable forest management.

2018 ◽  
Vol 79 (4) ◽  
pp. 335-343
Author(s):  
Firoz Ahmad ◽  
Md Meraj Uddin ◽  
Laxmi Goparaju

Abstract Analysing the forest fires events in climate change scenario is essential for protecting the forest from further degradation. Geospatial technology is one of the advanced tools that has enormous capacity to evaluate the number of data sets simultaneously and to analyse the hidden relationships and trends. This study has evaluated the long term forest fire events with respect to India’s state boundary, its seasonal monthly trend, all forest categories of LULC and future climate anomalies datasets over the Indian region. Furthermore, the spatial analysis revealed the trend and their relationship. The state wise evaluation of forest fire events reflects that the state of Mizoram has the highest forest fire frequency percentage (11.33%) followed by Chhattisgarh (9.39%), Orissa (9.18%), Madhya Pradesh (8.56%), Assam (8.45%), Maharashtra (7.35%), Manipur (6.94%), Andhra Pradesh (5.49%), Meghalaya (4.86%) and Telangana (4.23%) when compared to the total country’s forest fire counts. The various LULC categories which represent the forest show some notable forest fire trends. The category ‘Deciduous Broadleaf Forest’ retain the highest fire frequency equivalent to 38.1% followed by ‘Mixed Forest’ (25.6%), ‘Evergreen Broadleaf Forest’ (16.5%), ‘Deciduous Needle leaf Forest’ (11.5%), ‘Shrub land’ (5.5%), ‘Evergreen Needle leaf Forest’ (1.5%) and ‘Plantations’ (1.2%). Monthly seasonal variation of forest fire events reveal the highest forest fire frequency percentage in the month of ‘March’ (55.4%) followed by ‘April’ (28.2%), ‘February’ (8.1%), ‘May’ (6.7%), ‘June’ (0.9%) and ‘January’ (0.7%). The evaluation of future climate data for the year 2030 shows significant increase in forest fire seasonal temperature and abrupt annual rainfall pattern; therefore, future forest fires will be more intensified in large parts of India, whereas it will be more crucial for some of the states such as Orissa, Chhattisgarh, Mizoram, Assam and in the lower Sivalik range of Himalaya. The deciduous forests will further degrade in future. The highlight/results of this study have very high importance because such spatial relationship among the various datasets is analysed at the country level in view of the future climate scenario. Such analysis gives insight to the policymakers to make sustainable future plans for prioritization of the various state forests suffering from forest fire keeping in mind the future climate change scenario.


2021 ◽  
Author(s):  
Anastasios Rovithakis ◽  
Apostolos Voulgarakis ◽  
Manolis Grillakis ◽  
Christos Giannakopoulos ◽  
Anna Karali

<p>The Canadian Fire Weather Index (FWI) is a meteorologically based index designed initially to be used in Canada but it can also be used worldwide, including the Mediterranean, to estimate fire danger in a generalized fuel type based solely on weather observations. The four weather variables are measured and used as inputs to the FWI (rain accumulated over 24 h, temperature, relative humidity, and wind speed) are generally taken daily at noon local standard time.</p><p>Recent studies have shown that temperature and precipitation in the Mediterranean, and more specifically in Greece are expected to change, indicating longer and more intense summer droughts that even extend out of season. In connection to this, the frequency of forest fire occurrence and intensity is on the rise. In the present study, the FWI index is used in order to assess changes in future fire danger conditions.</p><p>To represent meteorological conditions, regional EURO-CORDEX climate model simulations over the Mediterranean and mainly Greece at a spatial resolution of 11 km, were utilized. In order to assess the impact of future climate change, we used two Representative Concentration Pathway (RCP) scenarios consisting of an optimistic emission scenario where emissions peak and decline beyond 2020 (RCP2.6) and a pessimistic scenario where emissions continue to rise throughout the century (RCP8.5).  We compare the FWI projections for two future time periods, 2021-2050 and 2071-2100 with reference to the historical time period 1971-2000. Based on the critical fire risk threshold values that have been established in previous studies for the area of Greece, the days with critical fire risk were calculated for different Greek domains.</p>


2017 ◽  
Vol 30 (17) ◽  
pp. 6701-6722 ◽  
Author(s):  
Daniel Bannister ◽  
Michael Herzog ◽  
Hans-F. Graf ◽  
J. Scott Hosking ◽  
C. Alan Short

The Sichuan basin is one of the most densely populated regions of China, making the area particularly vulnerable to the adverse impacts associated with future climate change. As such, climate models are important for understanding regional and local impacts of climate change and variability, like heat stress and drought. In this study, climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are validated over the Sichuan basin by evaluating how well each model can capture the phase, amplitude, and variability of the regionally observed mean, maximum, and minimum temperature between 1979 and 2005. The results reveal that the majority of the models do not capture the basic spatial pattern and observed means, trends, and probability distribution functions. In particular, mean and minimum temperatures are underestimated, especially during the winter, resulting in biases exceeding −3°C. Models that reasonably represent the complex basin topography are found to generally have lower biases overall. The five most skillful climate models with respect to the regional climate of the Sichuan basin are selected to explore twenty-first-century temperature projections for the region. Under the CMIP5 high-emission future climate change scenario, representative concentration pathway 8.5 (RCP8.5), the temperatures are projected to increase by approximately 4°C (with an average warming rate of +0.72°C decade−1), with the greatest warming located over the central plains of the Sichuan basin, by 2100. Moreover, the frequency of extreme months (where mean temperature exceeds 28°C) is shown to increase in the twenty-first century at a faster rate compared to the twentieth century.


2021 ◽  
Author(s):  
Verónica Dankiewicz ◽  
Matilde M. Rusticucci ◽  
Soledad M. Collazo

<p>Forest fires are a global phenomenon and result from complex interactions between weather and climate conditions, ignition sources, and humans. Understanding these relationships will contribute to the development of management strategies for their mitigation and adaptation. In the context of climate change, fire hazard conditions are expected to increase in many regions of the world due to projected changes in climate, which include an increase in temperatures and the occurrence of more intense droughts. In Argentina, northwestern Patagonia is an area very sensitive to these changes because of its climate, vegetation, the urbanizations highly exposed to fires, and the proximity of two of the largest and oldest National Parks in the country. The main objective of this work is to analyze the possible influence of climate change on some atmospheric patterns related to fire danger in northwestern Argentine Patagonia. The data were obtained from two CMIP5 global climate models CSIRO-Mk3-6-0 and GFDL-ESM2G and the CMIP5 multimodel ensemble, in the historical experiment and two representative concentration pathways: RCP2.6 and RCP8.5. The data used in this study cover the region's fire season (FS), from September to April, and were divided into five periods of 20 years each, a historical period (1986-2005), which was compared with four future periods: near (2021-2040), medium (2041-2060), far (2061-2080) and very far (2081-2100). The statistical distribution of the monthly composite fields of the FS was studied for some of the main fire drivers: sea surface temperature in the region of the index EN3.4 (SST EN3.4), sea level pressure anomalies ​​(SLP), surface air temperature anomalies (TAS), the Antarctic Oscillation Index (AOI) and monthly accumulated precipitation (PR). In addition, the partial correlation coefficient was calculated to determine the independent contribution of each atmospheric variable to the Fire Weather Index (FWI), used as a proxy for the mean FS danger. As a result, we observed that SST EN3.4 is the only one that could indicate a reduction in fire danger in the future, although no variable presented a significant contribution to the FWI with respect to the others. In the RCP8.5 scenario, greater fire danger is projected by the TAS, the PR, the SLP, and relative by the AOI, while in the RCP2.6 scenario, only the TAS shows influence leading to an increase, which would be offset by the opposite influence of SST EN3.4 for the same periods in this scenario. In conclusion, in RCP8.5 it could be assumed that there is a trend towards an increase in fire danger given the influence in this sense of most of the variables analyzed, but not in RCP2.6 where there would be no significant changes.</p>


2018 ◽  
Vol 10 (1) ◽  
pp. 78-88 ◽  
Author(s):  
Jian Sha ◽  
Zhong-Liang Wang ◽  
Yue Zhao ◽  
Yan-Xue Xu ◽  
Xue Li

Abstract The vulnerability of the natural water system in cold areas to future climate change is of great concern. A coupled model approach was applied in the headwater watershed area of Yalu River in the northeastern part of China to estimate the response of hydrological processes to future climate change with moderate data. The stochastic Long Ashton Research Station Weather Generator was used to downscale the results of general circulation models to generate synthetic daily weather series in the 2050s and 2080s under various projected scenarios, which were applied as input data of the Generalized Watershed Loading Functions hydrological model for future hydrological process estimations. The results showed that future wetter and hotter weather conditions would have positive impacts on the watershed runoff yields but negative impacts on the watershed groundwater flow yields. The freezing period in winter would be shortened with earlier snowmelt peaks in spring. These would result in less snow cover in winter and shift the monthly allocations of streamflow with more yields in March but less in April and May, which should be of great concern for future local management. The proposed approach of the coupled model application is effective and can be used in other similar areas.


Epidemiology ◽  
2004 ◽  
Vol 15 (4) ◽  
pp. S97
Author(s):  
Jonathan Patz ◽  
Howard Frumkin ◽  
Michell Klein ◽  
Michelle Bell ◽  
Hugh Ellis ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 3885
Author(s):  
Christos Spyrou ◽  
Michael Loupis ◽  
Νikos Charizopoulos ◽  
Ilektra Apostolidou ◽  
Angeliki Mentzafou ◽  
...  

Nature-based solutions (NBS) are being deployed around the world in order to address hydrometeorological hazards, including flooding, droughts, landslides and many others. The term refers to techniques inspired, supported and copied from nature, avoiding large constructions and other harmful interventions. In this work the development and evaluation of an NBS applied to the Spercheios river basin in Central Greece is presented. The river is susceptible to heavy rainfall and bank overflow, therefore the intervention selected is a natural water retention measure that aims to moderate the impact of flooding and drought in the area. After the deployment of the NBS, we examine the benefits under current and future climate conditions, using various climate change scenarios. Even though the NBS deployed is small compared to the rest of the river, its presence leads to a decrease in the maximum depth of flooding, maximum velocity and smaller flooded areas. Regarding the subsurface/groundwater storage under current and future climate change and weather conditions, the NBS construction seems to favor long-term groundwater recharge.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 534 ◽  
Author(s):  
Thompson ◽  
Simpson ◽  
Whitman ◽  
Barber ◽  
Parisien

Drought is usually the precursor to large wildfires in northwestern boreal Canada, a region with both large wildfire potential and extensive peatland cover. Fire is a contagious process, and given weather conducive to burning, wildfires may be naturally limited by the connectivity of fuels and the connectivity of landscapes such as peatlands. Boreal peatlands fragment landscapes when wet and connect them when dry. The aim of this paper is to construct a framework by which the hydrological dynamics of boreal peatlands can be incorporated into standard wildfire likelihood models, in this case the Canadian Burn-P3 model. We computed hydrologically dynamic vegetation cover for peatlands (37% of the study area) on a real landscape in the Canadian boreal plain, corresponding to varying water table levels representing wet, moderate, and severely dry fuel moisture and hydrological conditions. Despite constant atmospheric drivers of fire spread (air temperature, humidity, and wind speed) between drought scenarios, fire activity increased 6-fold in moderate drought relative to a low drought baseline; severe (1 in 40 years) drought scenarios drove fires into previously fire-restrictive environments. Fire size increased 5-fold during moderate drought conditions and a further 20%–25% during severe drought. Future climate change is projected to lead to an increase in the incidence of severe drought in boreal forests, leading to increases in burned area due to increasing fire frequency and size where peatlands are most abundant. Future climate change in regions where peatlands have historically acted as important barriers to fire spread may amplify ongoing increases in fire activity already observed in Western North American forests.


Sign in / Sign up

Export Citation Format

Share Document