Nitrogen uptake by plants subsidized by Pacific salmon carcasses: a hierarchical experiment

2012 ◽  
Vol 42 (5) ◽  
pp. 908-917 ◽  
Author(s):  
Morgan D. Hocking ◽  
John D. Reynolds

Bears ( Ursus spp.) and other predators can capture and transport large numbers of Pacific salmon ( Oncorhynchus spp.) to riparian areas beside small coastal streams, a process that may affect site productivity and local plant communities. We used a novel experimental manipulation of salmon carcasses to analyze understory plant uptake of salmon-derived N. A hierarchical before–after, control–impact design was used with the addition of chum salmon ( Oncorhynchus keta (Walbaum in Artedi, 1792)) carcasses to forest sites along 11 streams on the central coast of British Columbia, Canada. Eight months after carcass placement, the foliar %N and δ15N in three herbaceous and one moss species had increased by an average of 14%–60% (%N) and 0.5–3.3‰ (δ15N) at treatment carcass sites versus control sites. Treatment effects for %N were typically greater than for δ15N. Nitrogen isotope signatures at carcass sites were highly variable (δ15N range = 30.1‰) and were mediated by plant species, stream salmon density, carcass mass, and individual plant foliar %N. These results show that understory plants use N from salmon during an important period of plant growth many months after carcasses were deposited in riparian areas. However, they also indicate that habitat variation across spatial scales from individual plants to streams needs to be considered when estimating the contribution of salmon to plant nutrition.

2009 ◽  
Vol 87 (3) ◽  
pp. 195-203 ◽  
Author(s):  
Thomas P. Quinn ◽  
Stephanie M. Carlson ◽  
Scott M. Gende ◽  
Harry B. Rich, Jr.

Predation on Pacific salmon by bears (genus Ursus L., 1758) can be an important ecosystem process because the spatial distribution of carcasses largely determines whether marine-derived nutrients cycle through aquatic or terrestrial pathways. Direct observations on three streams in southeastern Alaska indicated that 49% of the pink ( Oncorhynchus gorbuscha (Walbaum, 1792)) and chum ( Oncorhynchus keta (Walbaum in Artedi, 1792)) salmon killed by bears were carried into the forest. The tendency of bears to transport carcasses was independent of the sex and species of salmon, but unspawned fish were more often transported than fish that had completed spawning. Data on tagged sockeye salmon ( Oncorhynchus nerka (Walbaum in Artedi, 1792)) in one southwestern Alaska stream indicated that 42.6% of the killed salmon were transported, and that higher percentages were transported in years when salmon densities were greater. At six other streams, on average, 68.1% of the sockeye salmon killed were apparently transported away from the stream into the forest. Combining the data from all sites, the proportion of carcasses transported increased with water depth at the site. These results emphasize the role that bears play in mediating the interactions between nutrients from salmon and the terrestrial and aquatic ecosystems, and the variation in carcass distribution among streams and among years.


2006 ◽  
Vol 63 (9) ◽  
pp. 2076-2086 ◽  
Author(s):  
Morgan D Hocking ◽  
Thomas E Reimchen

Anadromous Pacific salmon (Oncorhynchus spp.) subsidize terrestrial food webs with their nutrients and carcasses, a process driven largely by selective foraging by bears (Ursus spp.). We quantify wildlife transfer of salmon carcasses to riparian zones on two watersheds in coastal British Columbia and estimate total terrestrial fly production from remnant carcasses. Large-bodied chum salmon (Oncorhynchus keta) were transferred into the forest at a greater rate than were pink salmon (Oncorhynchus gorbuscha) (chum salmon mass = 6089–11 031 kg, 16%–48% of salmon run; pink salmon mass = 2266–2808 kg, 4%–6% of salmon run). Blow flies (genus Calliphora) and other Diptera dominated colonization (>90% of salmon carcasses). Between the two watersheds, 196 and 265 g of Calliphora larvae per metre of spawning length (4 and 7 million larvae for whole watersheds) were generated from salmon carcass transfer. Stable isotope analysis of δ15N and δ13C of spring-emerging adult Calliphora revealed that >80% of individuals had salmon-based signatures. Flies are a dominant consumer and vector of salmon nutrients in terrestrial habitats and supplement the diet of at least 16 vertebrate and 22 invertebrate species. Anticipated further declines of salmon in the North Pacific can be expected to further erode the complex associations coupling marine and terrestrial ecosystems.


2015 ◽  
Author(s):  
Carlo Ricotta ◽  
Eszter EA Ari ◽  
Giuliano Bonanomi ◽  
Francesco Giannino ◽  
Duncan Heathfield ◽  
...  

The increasing availability of phylogenetic information facilitates the use of evolutionary methods in community ecology to reveal the importance of evolution in the species assembly process. However, while several methods have been applied to a wide range of communities across different spatial scales with the purpose of detecting non-random phylogenetic patterns, the spatial aspects of phylogenetic community structure have received far less attention. Accordingly, the question for this study is: can point pattern analysis be used for revealing the phylogenetic structure of multi-species assemblages? We introduce a new individual-centered procedure for analyzing the scale-dependent phylogenetic structure of multi-species point patterns based on digitized field data. The method uses nested circular plots with increasing radii drawn around each individual plant and calculates the mean phylogenetic distance between the focal individual and all individuals located in the circular ring delimited by two successive radii. This scale-dependent value is then averaged over all individuals of the same species and the observed mean is compared to a null expectation with permutation procedures. The method detects particular radius values at which the point pattern of a single species exhibits maximum deviation from the expectation towards either phylogenetic aggregation or segregation. Its performance is illustrated using data from a grassland community in Hungary and simulated point patterns. The proposed method can be extended to virtually any distance function for species pairs, such as functional distances.


Science ◽  
2019 ◽  
Vol 364 (6442) ◽  
pp. 783-786 ◽  
Author(s):  
Sean R. Brennan ◽  
Daniel E. Schindler ◽  
Timothy J. Cline ◽  
Timothy E. Walsworth ◽  
Greg Buck ◽  
...  

Watersheds are complex mosaics of habitats whose conditions vary across space and time as landscape features filter overriding climate forcing, yet the extent to which the reliability of ecosystem services depends on these dynamics remains unknown. We quantified how shifting habitat mosaics are expressed across a range of spatial scales within a large, free-flowing river, and how they stabilize the production of Pacific salmon that support valuable fisheries. The strontium isotope records of ear stones (otoliths) show that the relative productivity of locations across the river network, as both natal- and juvenile-rearing habitat, varies widely among years and that this variability is expressed across a broad range of spatial scales, ultimately stabilizing the interannual production of fish at the scale of the entire basin.


2010 ◽  
Vol 61 (9) ◽  
pp. 999 ◽  
Author(s):  
C. Cvitanovic ◽  
A. S. Hoey

The removal of macroalgae by herbivores is fundamental to the long-term persistence of coral reefs. Variation in macroalgal browsing has been documented across a range of spatial scales on coral reefs; however, few studies have examined the factors that influence within-habitat rates of herbivory. The aim of the present study was to quantify herbivory on two species of Sargassum across three bays on an inshore island in the central Great Barrier Reef (GBR), and to determine whether these removal rates were related to the benthic composition or herbivorous fish communities. Removal rates of Sargassum differed significantly among bays, with removal rates in the southern bay (66.9–83.0% per 3 h) being approximately double that of the two other bays (29.2–38.5% per 3 h). The removal rates displayed a direct relationship with the benthic community structure, in particular the cover of macroalgae and live plate corals. Although it is difficult to determine whether these relationships are related to the availability of food resources or the structural complexity of the substratum, they highlight the potential influence of benthic composition on ecological processes. Quantifying and understanding the drivers of herbivory across a range of spatial scales is essential to the future management of coral reefs.


2011 ◽  
Vol 278 (1721) ◽  
pp. 3081-3088 ◽  
Author(s):  
Rachel D. Field ◽  
John D. Reynolds

Pacific salmon ( Oncorhynchus spp.) returning to streams around the North Pacific Rim provide a nutrient subsidy to these ecosystems. While many species of animals feed directly on salmon carcasses each autumn, salmon-derived nutrients can also be stored in coastal habitats throughout the year. The effects of this storage legacy on vertebrates in other seasons are not well understood, especially in estuaries, which can receive a large portion of post-spawning salmon nutrients. We examine the effects of residual salmon-derived nutrients, forest habitats and landscape features on summer breeding birds in estuary forests. We compared models containing environmental variables and combined chum ( Oncorhynchus keta ) and pink ( Oncorhynchus gorbuscha ) salmon biomass to test predictions concerning bird density and diversity. We discovered that total bird, insectivore, golden-crowned kinglet and Pacific wren densities and Shannon's diversity in the summer were strongly predicted by salmon biomass in the autumn. For most metrics, this relationship approaches an asymptote beyond 40 000 kg of salmon biomass. Foliage height diversity, watershed catchment area and estuary area were also important predictors of avian communities. Our study suggests that the legacy of salmon nutrients influences breeding bird density and diversity in estuaries that vary across a wide gradient of spawning salmon biomass.


1990 ◽  
Vol 64 (4) ◽  
pp. 648-658 ◽  
Author(s):  
George M. Staff ◽  
Eric N. Powell

Taphofacies have been based on the likelihood that considerable variability exists in taphonomic processes between different environments and that this variability produces predictable variations in taphonomic signature between assemblages. Three stations above storm wave base that differed little in sediment texture and depth were sampled on the inner continental shelf of central Texas. Taphonomic analysis revealed subtle gradients in sediment grain size and water depth that would not be revealed by most other analyses. These gradients may exist over very small spatial scales, equivalent to those within a single extensive outcrop. Not all taphonomic attributes are equally likely to be preserved in the fossil record. Those varying with depth in our study area, such as fragmentation and articulation, are more likely to be preserved than those documenting changes in sediment texture, such as variation in the frequency of dissolution features on the shells. Nevertheless, siting and sampling protocols are important when characterizing a taphofacies because within-habitat variation is potentially as large as between-habitat variation. Description of the average taphofacies for an environment must include documentation of the variation in taphonomic attributes within the sampled area because few conservative taphonomic attributes exist. Fragments, even those that are unidentifiable, retain significant taphonomic information and should not be ignored. Careful sampling should permit the simultaneous description of general taphofacies as well as the detection of important but unsuspected gradients in the environment.


Sign in / Sign up

Export Citation Format

Share Document