Solution concentrations of nutrient ions below the rooting zone of a sugar maple stand: relations to soil moisture, temperature, and season

1993 ◽  
Vol 23 (4) ◽  
pp. 617-624 ◽  
Author(s):  
Xiwei Yin ◽  
Neil W. Foster ◽  
Paul A. Arp

Temporal variations of ion concentrations in soil solution were analyzed in relation to soil percolate volume, soil water content, soil temperature, solution chemistry, and season. The study site was an uneven-aged, mature northern tolerant hardwoods dominated by sugar maple (Acersaccharum Marsh.) within the Turkey Lakes Watershed, Ontario. Six ions were investigated: nitrate (NO3−), sulfate (SO42−), calcium (Ca2+), magnesium (Mg2+), potassium (K+), and ammonium (NH4+). Nitrate concentrations in the soil solution depended on season during the nonfoliage period and responded directly to forest floor percolation, soil water content, and season during the foliage period. Variations of SO42−, Ca2+, and Mg2+ concentrations were mostly attributable to NO3− concentration, and to season to a lesser extent. Concentrations of K+ and NH4+ correlated only weakly to any of the "independent" variables included in the analysis, reflecting a high affinity between these ions and the soil colloids.

Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


1988 ◽  
Vol 68 (4) ◽  
pp. 715-722 ◽  
Author(s):  
R. G. KACHANOSKI ◽  
I. J. VAN WESENBEECK ◽  
E. G. GREGORICH

The relationships among the spatial variations of soil water content, soil texture, soil solution electrical conductivity, and bulk soil electrical conductivity were examined for a field characterized by net drainage and low concentrations of dissolved electrolytes. Bulk soil electrical conductivity was measured over various depths at 52 locations within a 1.8-ha field using noncontacting electromagnetic inductive meters. Soil water content (0–0.5 m depth) was measured at the same locations using the time domain reflectometry method. Measurements of soil texture and soil solution conductivity were obtained from core samples from 37 of the sampling locations. Soil water content at the site ranged from 0.06 to 0.36 m3 m−3. Clay content ranged from 2.5 to 44% percent and bulk soil electrical conductivity ranged from 0.0 to 0.21 S m−1. Significant correlation existed among almost all of the measured variables. Regression analysis indicated soil solution conductivity had no effect on measured bulk soil electrical conductivity for soil water contents less than 0.25 m3 m−3. Bulk soil electrical conductivity explained 96% of the spatial variation of soil water content independent of a wide range of soil texture. Autocorrelations of soil water content were similar to autocorrelations for bulk soil electrical conductivity. Under conditions similar to those in the study area, it should be possible to infer spatial variations in soil water content quickly by measuring bulk electrical conductivity using noncontacting electromagnetic inductive meters. Key words: Spatial variability, soil water, electrical conductivity, soil texture


2016 ◽  
Author(s):  
Wei Qu ◽  
Heye R. Bogena ◽  
Johan A. Huisman ◽  
Marius Schmidt ◽  
Ralf Kunkel ◽  
...  

Abstract. The Rollesbroich headwater catchment located in Western Germany is a densely instrumented hydrological observatory and part of the TERENO (Terrestrial Environmental Observatories) initiative. The measurements acquired in this observatory present a comprehensive dataset that contains key hydrological fluxes in addition to important hydrological states and properties. Meteorological data (i.e. precipitation, air temperature, air humidity, radiation components, and wind speed) are continuously recorded and actual evapotranspiration is measured using the eddy covariance technique. Runoff is measured at the catchment outlet with a gauging station. In addition, spatio-temporal variations in soil water content and temperature are measured at high resolution with a wireless sensor network (SoilNet). Soil physical properties were determined using standard laboratory procedures from samples taken at a large number of locations in the catchment. This comprehensive data set can be used to validate remote sensing retrievals and hydrological models; to improve the understanding of spatial temporal dynamics of soil water content; to optimize data assimilation and inverse techniques for hydrological models; and to develop upscaling and downscaling procedures of soil water content information. The complete data set is freely available online (http://www.tereno.net).


2005 ◽  
Vol 54 (1-2) ◽  
pp. 121-138
Author(s):  
Julianna Csillag ◽  
András Lukács ◽  
Géza Pártay ◽  
Krisztina Rajkainé Végh

Experiments were carried out on an acidic, clay loam soil (Ragály) to study the release of potassium into the soil solution as affected by soil acidification and soil water content. Two replicates of air-dried samples were acidified with HCl solutions to various water contents: soil suspensions (at 1:10, 1:5, 1:2.5 and 1:1 soil:water ratios) and wet soil samples having water potentials of -0.1 kPa, -20 kPa and -100 kPa were prepared. Constant acid loads, corresponding to 0, 5, 12.5, 25, 37.5, 50 and 62.5 mmol H+/kg soil were applied to each soil water content series. At field capacity acid loads of 75, 87.5 and 100 mmol H+/kg soil were also applied. After one week of incubation the liquid phases were extracted by centrifugation with a rotor speed corresponding to -1500 kPa (equal to the conventional wilting point of plants). At constant soil water content, the potassium concentration in the liquid phase of the soil (cK) increased with decreasing pH according to an exponential relationship (cK = a e-bpH). The slope (b) was higher at low soil water contents. At constant acid load, the potassium concentration in the liquid phase increased with decreasing soil water content (q) according to a hyperbolic relationship cK = a' + b' {1 / (qq-qq')}, where q' denotes the gravimetric soil water content at -1500 kPa water potential. The slope (b') was higher at lower pH values. The combined effect of the matrix of changing acid load and soil water content gave a three-dimensional surface characterizing the plant available potassium concentration over a wide range of these parameters: ln cK (mg/L) = 4.79 - 0.66 pH + 9.79 {1/(qq-qq'); R2 = 0.87. A finely ground (<100 mmm) feldspar mixture (80% orthoclase + 20% albite) was added as potassium source to the air-dried samples of a slightly acidic sandy soil in 0:1, 1:3 and 1:1 feldspar:soil ratios (Somogysárd). Two replicates of the control and feldspar-enriched soil samples were moistened to field capacity with HNO3 solutions of 0, 0.25, 0.50, 0.75 and 1.0 mol/L concentrations (equal to acid loads of 0, 50, 100, 150 and 200 mmol H+/kg soil). The soil solution was extracted with the above centrifugation method. After feldspar application, the potassium concentration in the soil solution increased many times as compared with the control. Due to acid treatment the soil pH decreased by three units and the potassium concentration in the soil solution increased according to a saturation curve. Due to a two-unit decrease in soil pH, the potassium concentration increased threefold in the control and sixfold in feldspar-enriched (1:3) soil. This decrease in pH may take place due to root activity, promoting the dissolution of potassium minerals, and increasing potassium availability in the rhizosphere. The impact of drying-rewetting was also studied at the above feldspar:soil ratios. After one week of incubation the samples were kept in open vessels for one year, irrigated weekly with distilled water to field capacity, then the soil solution was extracted by centrifugation. The concentrations were compared to those measured in a soil solution obtained from soil not subjected to the drying-rewetting procedure. The potassium concentration decreased in the liquid phase of the soil with no added feldspar: presumably it entered more strongly bounded forms during the drying-rewetting cycles. In the feldspar-enriched soil, however, the potassium concentration in the soil solution increased, which may be the consequence of the slow dissolution of the feldspar mineral.


2012 ◽  
Vol 16 (6) ◽  
pp. 618-623 ◽  
Author(s):  
Torquato M. de Andrade Neto ◽  
Eugênio F. Coelho ◽  
José A. do V. Santana ◽  
Edvaldo B. Santana Júnior ◽  
Márcio da S. Alves

The objective of this work was to evaluate and to validate models for estimating potassium in the soil solution as a function of bulk electrical conductivity (ECw), soil water content (q) and a soil solution electrical conductivity (ECss). Treatments consisted of using three concentrations of injecting solution of potassium chloride (1.0, 2.5 and 4.0 g L-1) which were applied by two trickle irrigation systems (microsprinkler and drip) during the first cycle of the banana crop cv. Terra Maranhão. Results showed that it is feasible to estimate potassium concentration in the soil solution from data of ECss and q obtained by time domain reflectometry (TDR) using an equation that combined a linear and a potential model. The estimated values of potassium concentration were close to the ones measured along the crop cycle under field conditions, with a mean normalized deviation of 10.0%, maximum and minimum deviation of 5.0 and 13.0%, respectively.


Sign in / Sign up

Export Citation Format

Share Document