Throughfall nitrogen in a white spruce forest in southwest Alberta, Canada

1993 ◽  
Vol 23 (11) ◽  
pp. 2389-2394 ◽  
Author(s):  
R.D. Blew ◽  
D.R. Iredale ◽  
D. Parkinson

Rates of transfer of nitrogen in throughfall were measured in a Piceaglauca (Moench) Voss forest in southwest Alberta, Canada. Total annual flux of N in throughfall was estimated to be 6.8 kg•ha−1•year−1. The highest rates of N deposition in throughfall occurred during the spring. The pattern of seasonal variation of N in throughfall suggested that different processes of N accumulation in and loss from the canopy may have been operating at different times of the year. Annual leaching of N from the canopy was estimated to be 4.09 kg•ha−1•year−1 and represented 24% of the total amount of N returned to the forest floor (leachates plus litter fall).

1979 ◽  
Vol 57 (23) ◽  
pp. 2644-2656 ◽  
Author(s):  
C. T. Dyrness ◽  
D. F. Grigal

Five distinct forest communities were recognized along a 3-km transect. These are, listed in order of decreasing elevation: (i) open black spruce/feathermoss - Cladonia, (ii) closed black spruce/feathermoss, (iii) open black spruce/Sphagnum, (iv) black spruce woodland/Eriophorum, and (v) white spruce/alder/Calamagrostis (restricted to a narrow band adjacent to a stream). Several techniques of ordination were used to recognize these five forest communities plus two intergrades: (open black spruce/feathermoss - Cladonia) - (Sphagnum) and open black spruce/Sphagnum - woodland/Eriophorum.The distribution of two-thirds of the plant species was highly correlated with vegetation–slope zones. Results of the fit of Gaussian curves also suggest that vegetation boundaries were well placed. The distribution of the four soil series in the area was well correlated with vegetation–slope zones: three were limited to one zone each. Permafrost, absent from the soil on the ridgetop and upper slope, was generally within 40 to 50 cm of the surface elsewhere and tended to be at shallower depths as elevation decreased. The most striking differences in forest floor properties were found in the white spruce zone compared with the six black spruce dominated zones. The white spruce forest floor was markedly thinner and had higher levels of nutrients. In the six black spruce dominated zones, forest floor thickness and concentrations of N and Mg tended to increase with distance downslope, and P and K decreased.


2015 ◽  
Vol 358 ◽  
pp. 248-260 ◽  
Author(s):  
Björn Berg ◽  
Björn Erhagen ◽  
Maj-Britt Johansson ◽  
Mats Nilsson ◽  
Johan Stendahl ◽  
...  

2008 ◽  
Vol 54 (No. 8) ◽  
pp. 377-387
Author(s):  
P. Sah S ◽  
R. Brumme ◽  
N. Lamersdorf

We analysed stable isotopes of N in a spruce forest under ambient rainfall (no further manipulation of the atmospheric input) and clean rain application (10 years of reduced inorganic N- and acid-constituent input). The objectives of the study were to assess whether or not the natural <sup>15</sup>N abundance would function as an indicator for the N-status of our forest ecosystems. For this purpose, natural <sup>15</sup>N abundance values were measured in needles, litter fall, roots, soil, bulk precipitation, throughfall and soil water of both plots. In the bulk precipitation and throughfall the &delta;<sup>15</sup>N values of NO<sub>3</sub>-N were in the range reported by other studies (–16 to + 23‰). In both plots, the throughfall was greatly depleted of <sup>15</sup>N compared to the bulk precipitation and this was attributed to nitrification in the canopy leaves, leading to &delta;<sup>15</sup>N-depleted nitrate production in the leaves that leaches down the soil surface. Nitrate in seepage water showed a general increase in &delta;<sup>15</sup>N values when it passes through the upper mineral soil (10 cm soil depth) and infiltrates into deeper mineral soil horizons (100 cm soil depth), similar to the &delta;<sup>15</sup>N enrichment of total nitrogen in the mineral soil. We observed <sup>15</sup>N depletion in both green needles and litter fall at the clean rain plot, compared to the N-saturated control plot. We assumed it to be due to increased mycorrhizal N-uptake under N limited, i.e. clean rain conditions which are indicated by relatively lower N concentrations of green needles. With respect to the vertical gradient of the <sup>15</sup>N abundance in the forest floor, both plots differ from each other, showing an untypical peak of &delta;<sup>15</sup>N depletion in the humus layer, which is more pronounced at the control plot. In contrast to the mineral soil where mineralisation is a dominant process for fractionation we attribute the &delta;<sup>15</sup>N pattern in the forest floor to additional processes like litter input and immobilisation. We conclude that the &delta;<sup>15</sup>N natural abundance analysis is helpful for interpreting the N-status of forest ecosystems but further research is needed especially with respect to the soil-root interface.


2000 ◽  
Vol 30 (6) ◽  
pp. 1010-1023 ◽  
Author(s):  
John Yarie

The Spatial Alaskan Forest Ecosystem Dynamics (SAFED) model was validated across four of the most common vegetation types found in interior Alaska. The vegetation types were an alder (Alnus spp.) - balsam poplar (Populus balsamifera L.) site (FP2), an old-growth balsam poplar and white spruce (Picea glauca (Moench) Voss) site (FP3), a mixed deciduous (primarily birch (Betula papyrifera Marsh.) and aspen (Populus tremuloides Michx.)) and white spruce site (UP2), and a mature white spruce site (UP3). The FP site types are common on the floodplain along the Tanana River and the UP site types are common in the uplands in interior Alaska. SAFED is based on nitrogen productivity for vegetation growth, litter fall quantity and quality, and microbial efficiency for forest floor decomposition. The state factors (climate, topography, and disturbance) are used to describe a broad-scale classification of the landscape to define basic limitations for the driving variables. Climate and ecosystem-level disturbances are handled as restricted stochastic processes. The model has been programed in a spatial framework as an ARC/INFO AML within the GRID package. The current version of the model has been validated as functional from an individual tree basis (1-m2 cell size) in a number of forest types found in interior Alaska. The growth, litter fall, and forest floor decomposition were compared with data from the sites. An estimate of yearly carbon balance for the four sites was calculated.


2012 ◽  
Vol 79 (4) ◽  
pp. 1191-1199 ◽  
Author(s):  
Sarah D. Eisenlord ◽  
Zachary Freedman ◽  
Donald R. Zak ◽  
Kai Xue ◽  
Zhili He ◽  
...  

ABSTRACTFuture rates of anthropogenic N deposition can slow the cycling and enhance the storage of C in forest ecosystems. In a northern hardwood forest ecosystem, experimental N deposition has decreased the extent of forest floor decay, leading to increased soil C storage. To better understand the microbial mechanisms mediating this response, we examined the functional genes derived from communities of actinobacteria and fungi present in the forest floor using GeoChip 4.0, a high-throughput functional-gene microarray. The compositions of functional genes derived from actinobacterial and fungal communities was significantly altered by experimental nitrogen deposition, with more heterogeneity detected in both groups. Experimental N deposition significantly decreased the richness and diversity of genes involved in the depolymerization of starch (∼12%), hemicellulose (∼16%), cellulose (∼16%), chitin (∼15%), and lignin (∼16%). The decrease in richness occurred across all taxonomic groupings detected by the microarray. The compositions of genes encoding oxidoreductases, which plausibly mediate lignin decay, were responsible for much of the observed dissimilarity between actinobacterial communities under ambient and experimental N deposition. This shift in composition and decrease in richness and diversity of genes encoding enzymes that mediate the decay process has occurred in parallel with a reduction in the extent of decay and accumulation of soil organic matter. Our observations indicate that compositional changes in actinobacterial and fungal communities elicited by experimental N deposition have functional implications for the cycling and storage of carbon in forest ecosystems.


2009 ◽  
Vol 6 (6) ◽  
pp. 10663-10706
Author(s):  
V. Wolff ◽  
I. Trebs ◽  
T. Foken ◽  
F. X. Meixner

Abstract. Total ammonium (tot-NH4+) and total nitrate (tot-NO3−) provide a chemically conservative quantity in the measurement of exchange processes of reactive nitrogen compounds ammonia (NH3), particulate ammonium (NH4+), nitric acid (HNO3), and particulate nitrate (NO3−), using the aerodynamic gradient method. Total fluxes were derived from concentration differences of total ammonium (NH3 and NH4+) and total nitrate (HNO3 and NO3−) measured at two levels. Gaseous species and related particulate compounds were measured selectively, simultaneously and continuously above a spruce forest canopy in south-eastern Germany in summer 2007. Measurements were performed using a wet-chemical two-point gradient instrument, the GRAEGOR. Median concentrations of NH3, HNO3, NH4−, and NO3− were 0.57, 0.12, 0.76, and 0.48 μg m−3, respectively. Total ammonium and total nitrate fluxes showed large variations depending on meteorological conditions, with concentrations close to zero under humid and cool conditions and higher concentrations under dry conditions. Mean fluxes of total ammonium and total nitrate in September 2007 were directed towards the forest canopy and were −65.77 ng m−2 s−1 and −41.02 ng m−2 s−1 (in terms of nitrogen), respectively. Their deposition was controlled by aerodynamic resistances only, with very little influence of surface resistances. Including measurements of wet deposition and findings of former studies at the study site on occult deposition (fog water interception), the total N deposition in September 2007 was estimated to 5.86 kg ha−1.


2021 ◽  
Vol 4 ◽  
Author(s):  
Emily Lloret ◽  
Sylvie Quideau

Boreal forest soils are highly susceptible to global warming, and in the next few decades, are expected to face large increases in temperature and transformative vegetation shifts. The entire boreal biome will migrate northward, and within the main boreal forest of Western Canada, deciduous trees will replace conifers. The main objective of our research was to assess how these vegetation shifts will affect functioning of soil microbial communities and ultimately the overall persistence of boreal soil carbon. In this study, aspen and spruce forest floors from the boreal mixedwood forest of Alberta were incubated in the laboratory for 67 days without (control) and with the addition of three distinct 13C labeled substrates (glucose, aspen leaves, and aspen roots). Our first objective was to compare aspen and spruce substrate utilization efficiency (SUE) in the case of a labile C source (13C-glucose). For our second objective, addition of aspen litter to spruce forest floor mimicked future vegetation shifts, and we tested how this would alter substrate use efficiency in the spruce forest floor compared to the aspen. Tracking of carbon utilization by microbial communities was accomplished using 13C-PLFA analysis, and 13C-CO2 measurements allowed quantification of the relative contribution of each added substrate to microbial respiration. Following glucose addition, the aspen community showed a greater 13C-PLFA enrichment than the spruce throughout the 67-day incubation. The spruce community respired a greater amount of 13C glucose, and it also had a much lower glucose utilization efficiency compared to the aspen. Following addition of aspen litter, in particular aspen leaves, the aspen community originally showed greater total 13C-PLFA enrichment, although gram positive phospholipid fatty acids (PLFAs) were significantly more enriched in the spruce community. While the spruce community respired a greater amount of the added 13C-leaves, both forest floor types showed comparable substrate utilization efficiencies by Day 67. These results indicate that a shift from spruce to aspen may lead to a greater loss of the aspen litter through microbial respiration, but that incorporation into microbial biomass and eventually into the more persistent soil carbon pool may not be affected.


2019 ◽  
Vol 34 ◽  
pp. 41-66 ◽  
Author(s):  
Raffaella Balestrini ◽  
Carlo Andrea Delconte ◽  
Andrea Buffagni ◽  
Alessio Fumagalli ◽  
Michele Freppaz ◽  
...  

A number of studies have reported decreasing trends of acidifying and N deposition inputs to forest areas throughout Europe and the USA in recent decades. There is a need to assess the responses of the ecosystem to declining atmospheric pollution by monitoring the variations of chemical species in the various compartments of the forest ecosystem on a long temporal scale. In this study, we report on patterns and trends in throughfall deposition concentrations of inorganic N, dissolved organic N (DON) and C (DOC) over a 20-year (1995–2015) period in the LTER site -Val Masino (1190 m a.s.l.), a spruce forest, in the Central Italian Alps. The same chemical species were studied in the litter floor leachates and mineral soil solution, at three different depths (15, 40 and 70 cm), over a 10-year period (2005–2015). Inorganic N concentration was drastically reduced as throughfall and litter floor leachates percolated through the topsoil, where the measured mean values (2 µeq L-1) were much lower than the critical limits established for coniferous stands (14 µeq L-1). The seasonal temperature dependence of throughfall DOC and DON concentration suggests that the microbial community living on the needles was the main source of dissolved organic matter. Most of DOC and DON infiltrating from the litter floor were retained in the mineral soil. The rainfall amount was the only climatic factor exerting a control on DOC and N compounds in throughfall and forest floor leachates over a decadal period. Concentration of SO4 and NO3 declined by 50% and 26% respectively in throughfall deposition. Trends of NO3 and SO4 in forest floor leachates and mineral soil solution mirrored declining depositions. No trends in both DON and DOC concentration and in DOC/DON ratio in soil solutions were observed. These outcomes suggest that the declining NO3 and SO4 atmospheric inputs did not influence the dynamic of DON and DOC in the Val Masino forest. The results of this study are particularly relevant, as they are based on a comprehensive survey of all the main compartments of the forest ecosystem. Moreover, this kind of long-term research has rarely been carried out in the Alpine region.


1992 ◽  
Vol 22 (11) ◽  
pp. 1761-1769 ◽  
Author(s):  
Kurt S. Pregitzer ◽  
Andrew J. Burton ◽  
Glenn D. Mroz ◽  
Hal O. Liechty ◽  
Neil W. MacDonald

Emissions of sulfur (S) and nitrogen (N) oxides in the midwestern and northeastern United States result in pronounced regional gradients of acidic deposition. The objective of this study was to determine the extent to which atmospheric deposition alters the uptake and cycling of S and N in five analogous northern hardwood forests located along one of the most pronounced regional gradients of SO42−-S and NO3−-N deposition in the United States. We tested the hypothesis that acidic deposition would alter foliar S and N ratios and nutrient cycling in aboveground litter fall. Sulfate in both wet deposition and throughfall increased by a factor of two across the 800-km deposition gradient. The July concentration of S in sugar maple (Acersaccharum Marsh.) leaves increased from about 1600 μg•g−1 at the northern research sites to 1800–1900 μg•g−1 at the southern sites. Differences in leaf litter S concentration were even more pronounced (872–1356 μg•g−1), and a clear geographic trend was always apparent in litter S concentration. The 3-year average S content of leaf litter was 63% greater at the southern end of the pollution gradient. Nitrate and total N deposition were also significantly greater at the southern end of the gradient. The concentration of N in both summer foliage and leaf litter was not correlated with N deposition, but the content of N in leaf litter was significantly correlated with N deposition. The molar ratios of S:N in mid-July foliage and leaf litter increased as atmospheric deposition of SO42−-S increased. Ratios of S:N were always much greater in leaf litter than in mid-July foliage. The molar ratios of S:N retranslocated from the canopies of these northern hardwood forests were less than those in mid-July foliage or litter fall and showed no geographic trend related to deposition, suggesting that S and N are retranslocated in a relatively fixed proportion. Significant correlations between SO42−-S deposition and foliar S concentration, S cycling, and the molar ratio of S:N in foliage suggest that sulfate deposition has altered the uptake and cycling of S in northern hardwood forests of the Great Lakes region.


1989 ◽  
Vol 19 (12) ◽  
pp. 1648-1650 ◽  
Author(s):  
Elizabeth Anne France ◽  
Dan Binkley ◽  
David Valentine

After 27 years of stand development, the accumulated forest floor under replicated plots of white pine (Pinusstrobus L.), white spruce (Piceaglauca (Moench) Voss), paper birch (Betulapapyrifera Marsh.), and silver maple (Acersaccharinum L.) ranged from 240 g/m2 under maple to 3680 g/m2 under white pine. Forest floor pH ranged from a low under maple of 3.7 to a high under white spruce of 5.9. No significant differences were found in pH in 0–15 cm depth mineral soil; however, substantial differences in the acid neutralization capacities were evident among species, with soils under maple showing the lowest capacity to resist further acidification.


Sign in / Sign up

Export Citation Format

Share Document