Genetic variation in tree structure and its relation to size in Douglas-fir. I. Biomass partitioning, foliage efficiency, stem form, and wood density

1994 ◽  
Vol 24 (6) ◽  
pp. 1226-1235 ◽  
Author(s):  
J. B. St.Clair

Genetic variation and covariation among traits of tree size and structure were assessed in an 18-year-old Douglas-fir (Pseudotsugamenziesii var. menziesii (Mirb.) Franco) genetic test in the Coast Range of Oregon. Considerable genetic variation was found in size, biomass partitioning, and wood density, and genetic gains may be expected from selection and breeding of desirable genotypes. Estimates of heritability for partitioning traits, including harvest index, were particularly high. Foliage efficiency (stem increment per unit leaf area) was strongly correlated with harvest index and may represent an alternative measure of partitioning to the stem. Estimates of foliage efficiency where leaf area was estimated based on stem diameter or sapwood area were unrelated to foliage efficiency where leaf area was measured directly. Strong negative genetic correlations were found between harvest index and stem size, and between wood density and stem size. Achieving simultaneous genetic gain in stem size and either harvest index or wood density would be difficult.

1994 ◽  
Vol 24 (6) ◽  
pp. 1236-1247 ◽  
Author(s):  
J.B. St. Clair

Genetic variation and covariation among traits of tree size and structure were assessed in an 18-year-old Douglas-fir (Pseudotsugamenziesii var. menziesii (Mirb.) Franco) genetic test in the Coast Range of Oregon. Considerable genetic variation was found for relative crown width; stem increment per crown projection area; leaf area and branch weight relative to crown size; branch diameter and length adjusted for stem size; branch stoutness; cross-sectional area of branches per crown length; and needle size. Little genetic variation was found for branch numbers per whorl, branch angle, and specific leaf area. At both the phenotypic and genetic level, large trees growing well relative to growing space had tall, narrow crowns, high leaf areas per crown projection area or branch length, greater partitioning to leaves versus branches, and stouter branches. Thus, large, efficient trees were those that invested more in the photosynthetic machinery of leaf area and the branch biomass necessary to support that leaf area, but distributed that leaf area over a greater vertical distance. Unfortunately, these traits also were associated with increased branchiness, and selection for these traits would be accompanied by reductions in harvest index and wood quality.


1999 ◽  
Vol 29 (12) ◽  
pp. 1993-1996 ◽  
Author(s):  
Barbara L Gartner ◽  
Jeffrey J Morrell ◽  
Camille M Freitag ◽  
Rachel Spicer

Heartwood durability of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) was studied as a function of vertical and radial position in boles of trees with a wide range of leaf area/sapwood area ratios. Six 34-year-old trees were harvested from each of three plots established 14 years before: very dense, thinned, and thinned and fertilized. Heartwood samples from three radial positions and five heights were incubated with the decay fungus Postia placenta (Fr.) M. Larsen et Lombard. There were no significant differences in wood mass loss (decay resistance) by vertical or radial position. One could expect that trees with high leaf area/sapwood area could have the carbon to produce heartwood that is more resistant to decay than trees with lower leaf area/sapwood area. However, we found no relationship between leaf area above node 20, sapwood area there, or their ratio, and the decay resistance of outer heartwood at that node. These results suggest that, for young Douglas-fir trees, heartwood durability does not vary with position in the bole or with environments that alter the tree's balance of sapwood and leaf area. We suggest that young stands may thus be robust with respect to the effect of silvicultural regimes on heartwood durability.


1985 ◽  
Vol 15 (5) ◽  
pp. 985-988 ◽  
Author(s):  
Ram Oren ◽  
Walter G. Thies ◽  
Richard H. Waring

Total stand sapwood basal area, a measure of competing canopy leaf area, was reduced 30% by laminated root rot induced by Phellinusweirii (Murr.) Gilb. in a heavily infected 40-year-old coastal stand of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) compared with that of a similar uninfected stand. Annual basal area increment per unit of sapwood area, an index of tree vigor, was expected to increase in uninfected trees in the infected stand as surrounding trees died from root rot; vigor of the uninfected trees did increase by an average of 30%, offsetting the reduction in canopy leaf area. This increase, although less than might be expected in an evenly spaced thinned stand, was sufficient to maintain stand basal area growth at levels similar to those of unthinned forests. These findings indicate that increased growth by residual trees must be taken into account when the impact of disease-induced mortality on stand production is assessed.


1999 ◽  
Vol 50 (3) ◽  
pp. 291 ◽  
Author(s):  
G. J. Rebetzke ◽  
R. A. Richards

Grain yield potential of Australian wheat crops is often limited because of inadequate water for crop growth and grain filling. Greater early vigour, defined here as the amount of leaf area produced early in the season, should improve the water-use efficiency and yield of wheat crops grown in Mediterranean-type climates such as occurs in southern Australia. In order to maximise selection efficiency for early vigour in breeding programs, the magnitude and form of genetic variation for early vigour and its components was investigated for 2 contrasting wheat populations. The first population comprised 28 Australian and overseas wheat varieties evaluated in a serial sowing study in Canberra. The second population contained 50 random F 2:4 and F 2:6 families derived from a convergent cross of elite CIMMYT wheat lines evaluated in Canberra, and in the field at Condobolin, New South Wales. For the first population, environmental effects on leaf breadth and length, and to a lesser extent, phyllochron interval, produced significant (P < 0.05) changes in leaf area. Large and significant (P < 0.05) differences were observed among Australian and overseas wheats for early vigour and its components. Australian varieties were among the least vigorous of the lines tested, with a number of overseas varieties producing about 75% greater leaf area than representative Australian wheats. Increased leaf area was genetically correlated with increases in leaf breadth and length, and a longer phyllochron interval. Significant (P < 0.05) genotype ´ environment interaction reduced broad-sense heritability (%) for early vigour (H ± s.e., 87 ± 26) compared with leaf breadth (96 ± 25) and length (97 ± 27). Narrow-sense heritability (%) in the second population was small for leaf area (h2 ± s.e., 30 ± 6) and plant biomass (35 ± 7), but high for leaf breadth (76 ± 14) and length (67 ± 16). Genetic correlations were strong and positive for leaf area with plant biomass, leaf breadth and length, specific leaf area and coleoptile tiller frequency, whereas faster leaf and primary tiller production were negatively correlated with leaf area. The high heritability for leaf breadth coupled with its strong genetic correlation with leaf area (rg = 0.56-0.57) indicated that selection for leaf breadth should produce genetic gain in leaf area similar to selection for leaf area per se. However, the ease with which leaf breadth can be measured indicates that selection for this character either by itself, or in combination with coleoptile tiller production, should provide a rapid and non-destructive screening for early vigour in segregating wheat populations. The availability of genetic variation for early vigour and correlated traits should enable direct or indirect selection for greater leaf area in segregating wheat populations.


2007 ◽  
Vol 37 (11) ◽  
pp. 2096-2105 ◽  
Author(s):  
Kelsey Sherich ◽  
Amy Pocewicz ◽  
Penelope Morgan

Trees respond to edge-to-interior microclimate differences in fragmented forests. To better understand tree physiological responses to fragmentation, we measured ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws) and Douglas-fir ( Pseudotsuga menziesii (Mirbel) Franco) leaf area, crown ratios, sapwood area, basal area (BA) growth rates, and BA growth efficiency at 23 long-established (>50 year) forest edges in northern Idaho. Trees located at forest edges had more leaf area, deeper crowns, higher BA growth rates, and more sapwood area at breast height than interior trees. Ponderosa pine had significantly higher BA growth efficiency at forest edges than interiors, but Douglas-fir BA growth efficiency did not differ, which may relate to differences in photosynthetic capacity and drought and shade tolerance. Edge orientation affected BA growth efficiency, with higher values at northeast-facing edges for both species. Edge effects were significant even after accounting for variation in stand density, which did not differ between the forest edge and interior. Although edge trees had significantly greater canopy depth on their edge-facing than forest-facing side, sapwood area was evenly distributed. We found no evidence that growing conditions at the forest edge were currently subjecting trees to stress, but higher leaf area and deeper crowns could result in lower tolerance to future drought conditions.


1996 ◽  
Vol 26 (11) ◽  
pp. 1991-2005 ◽  
Author(s):  
Douglas A. Maguire ◽  
William S. Bennett

Total amount and vertical distribution of foliage represent important aspects of forest stand structure and its influence on dry matter productivity, forest microclimate, watershed properties, and habitat structure. Variation in foliage distribution was analyzed on trees and plots in a series of even-aged Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands scheduled for management under a wide range of silvicultural regimes. Branch-level foliage mass and foliage area equations were developed from a sample of 138 branches. These equations were applied to 27 trees on which the diameter and height of all live primary branches were measured, allowing estimation of both the total amount of foliage and its vertical distribution. A β-distribution was fitted to data describing the vertical distribution of foliage on each tree, and the resulting parameter estimates were modelled as functions of tree height, diameter at breast height, crown length, and relative height in the stand. Foliage area distribution tended to be shifted downward relative to foliage mass because of the expected increase in specific leaf area with depth into the crown. Similarly, the relative foliage distribution in terms of both mass and area was shifted downward as the tree became more dominant, or as relative height in the stand increased. In contrast, foliage on trees of similar relative height was shifted upward in response to the lower stand densities imposed by precommercial thinning. On the stand level, relative vertical distribution of foliage in the canopy was more peaked than would be implied by assuming a constant leaf area/sapwood area ratio throughout the composite tree crowns. Between-stand variation in vertical foliage distribution was dictated by differences in stand top height, height to crown base, and number of trees per hectare.


2007 ◽  
Vol 37 (5) ◽  
pp. 966-976 ◽  
Author(s):  
Carmen Sotelo Montes ◽  
Jean Beaulieu ◽  
Roger E. Hernández

Calycophyllum spruceanum (Benth.) Hook. f. ex Shum. is an important timber tree species in the Peruvian Amazon Basin. Farmers and industry use wood from young trees of this species, so tree breeders should investigate genetic variation in juvenile wood properties to verify whether they can be improved. A previous study using the same provenance/progeny test showed that there was significant genetic variation in tree growth and wood density, that heritability was higher for density than for growth, and that density and growth were positively correlated at 39 months. This paper presents results for wood shrinkage at 39 months and their correlations with tree growth and wood density. Data were collected on thinned trees. Shrinkage values were relatively low when considering wood density of this species. There was significant genetic variation in wood shrinkage due to families within provenances and, in some cases, due to provenances. Heritability estimates were moderately high for linear and volumetric shrinkage (0.37–0.50) and lower for the tangential/radial shrinkage ratio (0.21–0.29) across zones. The genetic correlations that were considered significant ranged from 0.30 to 0.80. In general, genetic correlations suggest that selection of faster-growing trees with higher wood density would result in wood with greater shrinkage and a larger tangential/radial shrinkage ratio.


2006 ◽  
Vol 55 (1-6) ◽  
pp. 217-228 ◽  
Author(s):  
Sotelo Montes ◽  
R. E. Hernández ◽  
J. Beaulieu ◽  
J. C. Weber

Abstract Calycophyllum spruceanum (Benth.) Hook. f. ex K. Shum. is an important timber-tree species in the Peruvian Amazon Basin. As farmers and industry often use wood from young trees, it is important to investigate variation in juvenile wood properties in this species. A provenance/progeny test was established to evaluate genetic variation in growth and wood properties of young trees, the strength of their genetic control as well as their interrelationships both at the genetic and the phenotypic level in different planting zones. In this paper, results are presented for tree height and stem diameter (near ground level) at 16, 28 and 39 months; and stem diameter and basic density of the wood at breast height at 39 months. Significant variation due to provenances and especially due to families within provenances was found in growth and wood density. Phenotypic and genetic correlations indicated that larger trees tended to have denser wood. Wood density had higher heritability than height and diameter; and genetic control over height, diameter and density was generally highest in the planting zone where trees grew most rapidly.


2015 ◽  
Vol 12 (22) ◽  
pp. 6617-6635 ◽  
Author(s):  
L. T. Berner ◽  
B. E. Law

Abstract. Severe droughts occurred in the western United States during recent decades, and continued human greenhouse gas emissions are expected to exacerbate warming and drying in this region. We investigated the role of water availability in shaping forest carbon cycling and morphological traits in the eastern Cascade Mountains, Oregon, focusing on the transition from low-elevation, dry western juniper (Juniperus occidentalis) woodlands to higher-elevation, wetter ponderosa pine (Pinus ponderosa) and grand fir (Abies grandis) forests. We examined 12 sites in mature forests that spanned a 1300 mm yr−1 gradient in mean growing-year climate moisture index (CMIgy ), computed annually (1964 to 2013) as monthly precipitation minus reference evapotranspiration and summed October to September. Maximum leaf area, annual aboveground productivity, and aboveground live tree biomass increased with CMIgy (r2 = 0.67–0.88, P < 0.05), approximately 50-, 30-, and 10-fold along this drier to wetter gradient. Interannual fluctuations in CMI affected the annual radial growth of 91 % of juniper, 51 % of pine, and 12 % of fir individuals from 1964 to 2013. The magnitude of the site-average growth–CMI correlations decreased with increased CMIgy (r2 = 0.53, P < 0.05). All three species, particularly fir, experienced pronounced declines in radial growth from c. 1985 to 1994, coinciding with a period of sustained below-average CMIgy and extensive insect outbreak. Traits of stress-tolerant juniper included short stature, high wood density for cavitation resistance, and high investment in water transport relative to leaf area. Species occupying wetter areas invested more resources in height growth in response to competition for light relative to investment in hydraulic architecture. Consequently, maximum tree height, leaf area : sapwood area ratio, and stem wood density were all correlated with CMIgy . The tight coupling of forest carbon cycling and species traits with water availability suggests that warmer and drier conditions projected for the 21st century could have significant biogeochemical, ecological, and social consequences in the Pacific Northwest.


Sign in / Sign up

Export Citation Format

Share Document