Patterns in vertical distribution of foliage in young coastal Douglas-fir

1996 ◽  
Vol 26 (11) ◽  
pp. 1991-2005 ◽  
Author(s):  
Douglas A. Maguire ◽  
William S. Bennett

Total amount and vertical distribution of foliage represent important aspects of forest stand structure and its influence on dry matter productivity, forest microclimate, watershed properties, and habitat structure. Variation in foliage distribution was analyzed on trees and plots in a series of even-aged Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands scheduled for management under a wide range of silvicultural regimes. Branch-level foliage mass and foliage area equations were developed from a sample of 138 branches. These equations were applied to 27 trees on which the diameter and height of all live primary branches were measured, allowing estimation of both the total amount of foliage and its vertical distribution. A β-distribution was fitted to data describing the vertical distribution of foliage on each tree, and the resulting parameter estimates were modelled as functions of tree height, diameter at breast height, crown length, and relative height in the stand. Foliage area distribution tended to be shifted downward relative to foliage mass because of the expected increase in specific leaf area with depth into the crown. Similarly, the relative foliage distribution in terms of both mass and area was shifted downward as the tree became more dominant, or as relative height in the stand increased. In contrast, foliage on trees of similar relative height was shifted upward in response to the lower stand densities imposed by precommercial thinning. On the stand level, relative vertical distribution of foliage in the canopy was more peaked than would be implied by assuming a constant leaf area/sapwood area ratio throughout the composite tree crowns. Between-stand variation in vertical foliage distribution was dictated by differences in stand top height, height to crown base, and number of trees per hectare.

1999 ◽  
Vol 29 (12) ◽  
pp. 1993-1996 ◽  
Author(s):  
Barbara L Gartner ◽  
Jeffrey J Morrell ◽  
Camille M Freitag ◽  
Rachel Spicer

Heartwood durability of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) was studied as a function of vertical and radial position in boles of trees with a wide range of leaf area/sapwood area ratios. Six 34-year-old trees were harvested from each of three plots established 14 years before: very dense, thinned, and thinned and fertilized. Heartwood samples from three radial positions and five heights were incubated with the decay fungus Postia placenta (Fr.) M. Larsen et Lombard. There were no significant differences in wood mass loss (decay resistance) by vertical or radial position. One could expect that trees with high leaf area/sapwood area could have the carbon to produce heartwood that is more resistant to decay than trees with lower leaf area/sapwood area. However, we found no relationship between leaf area above node 20, sapwood area there, or their ratio, and the decay resistance of outer heartwood at that node. These results suggest that, for young Douglas-fir trees, heartwood durability does not vary with position in the bole or with environments that alter the tree's balance of sapwood and leaf area. We suggest that young stands may thus be robust with respect to the effect of silvicultural regimes on heartwood durability.


IAWA Journal ◽  
2002 ◽  
Vol 23 (3) ◽  
pp. 267-285 ◽  
Author(s):  
Barbara L. Gartner

The relationships between leaf area and sapwood and inner bark quantities (widths, areas, and volumes) were studied in an attempt to understand the design criteria for sapwood quantity in eighteen 34-year-old Douglas-fir (Pseudotsuga menziesii) trees with a wide range of leaf areas, sapwood areas, and dry masses of leaf, xylem, bark, and branch. Cumulative leaf area increased from the tip to the base of the crown, and then was constant; none of the other variables had the same distribution, and so whereas there were many significant correlations, none of the factors can be related to leaf area in a simple, causal manner. Leaf area /sapwood area was extremely variable from tree to tree at a given height, and within a tree from height to height. Sapwood width was relatively constant from the tip down the stem, supporting the hypothesis that sapwood quantity in this species is related to radial gas diffusion causing either a lethal buildup of CO2 or a lethal depletion of O2 at the sap/heart boundary. However, there was no significant correlation between leaf area and either total sapwood density (dry weight/green volume) or the average latewood density in the sapwood which were used as proxies for radial diffusion rate; further research on actual radial gas diffusion in green wood may be informative.


2006 ◽  
Vol 36 (6) ◽  
pp. 1497-1508 ◽  
Author(s):  
Aaron R Weiskittel ◽  
Douglas A Maguire ◽  
Sean M Garber ◽  
Alan Kanaskie

Swiss needle cast (SNC) causes premature loss of foliage and subsequent growth decline in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Although the mechanisms leading to this growth decline include loss of photosynthetic surface area and physiological disruption of surviving foliage, estimating the relative contribution of these two primary sources requires precise quantification of SNC effects on total foliage mass, foliage age-class structure, and vertical foliage distribution. The effect of SNC severity on these crown structural attributes was tested across a range of stand densities and site qualities in 10- to 60-year-old plantations in north coastal Oregon. Foliage mass in each age-class was sampled at the branch level, and the resulting equations were applied to all live branches on intensively measured sample trees. Vertical distribution of each foliage age-class was described by a beta distribution fitted to each sample tree, and sources of variation in vertical distribution were tested by regressing beta parameter estimates on SNC intensity and other covariates representing tree, stand, and site attributes. Distribution of foliage mass by age-class and by relative height in the crown was significantly affected by SNC severity, in addition to other covariates such as crown size and tree social position. SNC caused a reduction in the amount of foliage in each age-class and greater relative representation of younger needles. SNC also shifted the mode of relative vertical distribution toward the top of the tree for the three youngest foliage age-classes, but toward the base of the crown for 4- and 5-year-old foliage. Quantification of foliage age-class structure and vertical distribution across a range of SNC severity has helped to establish diagnostic criteria for assessing changes in crown structure that precede declines in growth and vigor. The induced changes in crown structure will also help to identify the relative contribution of several mechanisms causing growth losses in diseased trees.


1985 ◽  
Vol 15 (5) ◽  
pp. 985-988 ◽  
Author(s):  
Ram Oren ◽  
Walter G. Thies ◽  
Richard H. Waring

Total stand sapwood basal area, a measure of competing canopy leaf area, was reduced 30% by laminated root rot induced by Phellinusweirii (Murr.) Gilb. in a heavily infected 40-year-old coastal stand of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) compared with that of a similar uninfected stand. Annual basal area increment per unit of sapwood area, an index of tree vigor, was expected to increase in uninfected trees in the infected stand as surrounding trees died from root rot; vigor of the uninfected trees did increase by an average of 30%, offsetting the reduction in canopy leaf area. This increase, although less than might be expected in an evenly spaced thinned stand, was sufficient to maintain stand basal area growth at levels similar to those of unthinned forests. These findings indicate that increased growth by residual trees must be taken into account when the impact of disease-induced mortality on stand production is assessed.


1996 ◽  
Vol 26 (5) ◽  
pp. 849-863 ◽  
Author(s):  
Douglas A. Maguire ◽  
João L.F. Batista

Sapwood dimensions lend insight into the functional and ecophysiological structure of trees and can therefore be profitably applied in various types of growth analyses and simulation models. Ten taper models were fitted to sapwood data from the stems of 134 Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) trees and were compared by various fit statistics, residual behavior, and validation performance on 21 additional trees. The recommended model was a variable exponent model with six parameters and three basic tree-level predictors: diameter, height, and height to crown base. The resulting equation can be applied for estimating sapwood area at crown base, leaf area, sapwood volume, and vertical foliage distribution on standing trees. Ten sample plots are examined to demonstrate that sapwood taper models allow more explicit portrayal of stand structure in dimensions that have a direct functional link to various growth and developmental processes.


1993 ◽  
Vol 23 (3) ◽  
pp. 479-491 ◽  
Author(s):  
Keith S. Hadley ◽  
Thomas T. Veblen

The montane forests (i.e., below ca. 2900 m) of the Colorado Front Range have experienced repeated outbreaks of western spruce budworm (Choristoneuraoccidentalis Free.) and Douglas-fir bark beetle (Dendroctonuspseudotsugae Hopk.), both of which locally attack Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco). In this study we examine the effects of historically documented outbreaks of these insects on succession, stand structure, and radial growth of host and nonhost species in Rocky Mountain National Park. The most recent budworm (1974–1985) and bark beetle (1984–present) outbreaks resulted in the most severe and widespread disturbance of these forests since the late 1800s. Stand response to these outbreaks is primarily a function of stand structure and age characteristics of Douglas-fir prior to an outbreak. Young, vigorous postfire stands show minimal budworm defoliation, and in these stands only remnant trees from the prefire generation appear susceptible to beetle-caused mortality. Dense stands exhibit higher budworm-induced mortality, which hastens the natural thinning process and shifts dominance towards the nonhost species. The stands most severely disturbed by the combined insect agents are multistoried stands with high host densities and a wide range of stem sizes. The stand response to these disturbances include the growth release of shade-intolerant, seral species, and in some cases, a higher survivorship among midsized individuals of the host Douglas-fir. The net result of the combined insect outbreaks is the temporary slowing of the successional trend towards a steady-state Douglas-fir forest. Fire suppression, by increasing the density of suppressed Douglas-fir, has previously been shown to favor increased outbreak severity of western spruce budworm in the northern Rockies. However, in the Front Range, recent increases in outbreak severity and their synchroneity may also be the result of large areas of forest, burned during the late 19th century during European settlement, simultaneously entering structural stages susceptible to insect outbreak.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 511 ◽  
Author(s):  
Jacob D. Putney ◽  
Douglas A. Maguire

Nitrogen (N) fertilization is a commonly applied silvicultural treatment in intensively managed coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) plantations. Field trials were established in a randomized complete block design by Stimson Lumber Company (Gaston, Oregon), to test the economic viability of N fertilization on their ownership and to better understand Douglas-fir growth responses. The 23 stands comprising the trials were Douglas-fir dominated, had a total age of 16–24 years, had been precommercially thinned, and had a density of 386–1021 trees ha−1. Fertilizer was applied aerially at a rate of 224 kg N ha−1 as urea during the 2009–2010 dormant season. In the dormant season of 2016–2017, seven growing seasons following application, 40 trees were felled and measured with the objective of assessing crown attributes and aboveground allometrics. Branch-level foliage mass equations were developed from 267 subsampled branches and were applied to the 40 felled sample trees on which the basal diameter and height of all live branches were measured, allowing estimation of both the total amount of foliage and its vertical distribution. A right-truncated Weibull distribution was fitted to data, with the truncation point specified as the base of live tree crown. The resulting tree-level parameter estimates were modeled as functions of tree-level variables. Stand-level factors not explicitly measured were captured through the use of linear and nonlinear mixed-effects models with random stand effects. Fertilization resulted in more total crown foliage mass in the middle crown-third and caused a downward shift in the vertical distribution of foliage, with implications for feedback responses in crown development and photosynthetic capacity. Defining the morphological responses of Douglas-fir crowns to nitrogen fertilization provides a framework for studying influences on stand dynamics and should ultimately facilitate improved site-specific predictions of stem-volume growth.


2007 ◽  
Vol 37 (11) ◽  
pp. 2096-2105 ◽  
Author(s):  
Kelsey Sherich ◽  
Amy Pocewicz ◽  
Penelope Morgan

Trees respond to edge-to-interior microclimate differences in fragmented forests. To better understand tree physiological responses to fragmentation, we measured ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws) and Douglas-fir ( Pseudotsuga menziesii (Mirbel) Franco) leaf area, crown ratios, sapwood area, basal area (BA) growth rates, and BA growth efficiency at 23 long-established (>50 year) forest edges in northern Idaho. Trees located at forest edges had more leaf area, deeper crowns, higher BA growth rates, and more sapwood area at breast height than interior trees. Ponderosa pine had significantly higher BA growth efficiency at forest edges than interiors, but Douglas-fir BA growth efficiency did not differ, which may relate to differences in photosynthetic capacity and drought and shade tolerance. Edge orientation affected BA growth efficiency, with higher values at northeast-facing edges for both species. Edge effects were significant even after accounting for variation in stand density, which did not differ between the forest edge and interior. Although edge trees had significantly greater canopy depth on their edge-facing than forest-facing side, sapwood area was evenly distributed. We found no evidence that growing conditions at the forest edge were currently subjecting trees to stress, but higher leaf area and deeper crowns could result in lower tolerance to future drought conditions.


1994 ◽  
Vol 24 (6) ◽  
pp. 1226-1235 ◽  
Author(s):  
J. B. St.Clair

Genetic variation and covariation among traits of tree size and structure were assessed in an 18-year-old Douglas-fir (Pseudotsugamenziesii var. menziesii (Mirb.) Franco) genetic test in the Coast Range of Oregon. Considerable genetic variation was found in size, biomass partitioning, and wood density, and genetic gains may be expected from selection and breeding of desirable genotypes. Estimates of heritability for partitioning traits, including harvest index, were particularly high. Foliage efficiency (stem increment per unit leaf area) was strongly correlated with harvest index and may represent an alternative measure of partitioning to the stem. Estimates of foliage efficiency where leaf area was estimated based on stem diameter or sapwood area were unrelated to foliage efficiency where leaf area was measured directly. Strong negative genetic correlations were found between harvest index and stem size, and between wood density and stem size. Achieving simultaneous genetic gain in stem size and either harvest index or wood density would be difficult.


1989 ◽  
Vol 19 (3) ◽  
pp. 392-396 ◽  
Author(s):  
Dan C. Thompson

The relationship of sapwood area to leaf area in lodgepole pine was examined across a variety of habitat types and stand densities in northwest Montana. No statistical differences were found between plots with regard to either habitat type or stand density. A nonlinear relationship was found between leaf area and sapwood area. Increasing amounts of sapwood were associated with a decrease in the leaf area–sapwood area ratio. A large amount of within-plot variation in the sapwood area–leaf area relationship was explained by differences between dominant trees and trees of other crown classes. Leaf area (LA) was best estimated by the equation LA = 0.12 × S − 0.0003 × S2 + 0.06 × S × D, where LA is leaf area, S is sapwood area, and D is the crown class (dominant). Differences between dominant and subdominant trees appear to be related to ring width and its associated permeability. Differences in sapwood area–leaf area equations among different studies may be due in part to differences in stand structure.


Sign in / Sign up

Export Citation Format

Share Document