Acid-rain-induced changes in cuticles and Ca distribution in Scots pine and Norway spruce seedlings

1995 ◽  
Vol 25 (8) ◽  
pp. 1313-1325 ◽  
Author(s):  
Minna Turunen ◽  
Satu Huttunen ◽  
Jaana Back ◽  
Jukka Lamppu

Seedlings of Scots pine (Pinussylvestris L.) and Norway spruce (Piceaabies (L.) Karst.) were subjected to acid rain irrigation at pH 7, pH 4, and pH 3 three times a week during the growing seasons of 1986–1989 in a field experiment. Scanning and transmission electron microscopy, energy dispersive spectrometry, contact angle measurements, and chloroform extraction of waxes were used to detect physicochemical changes in the needle cuticles. The first detectable symptoms of acid rain were observed after 5 weeks of acid rain treatment at pH 3 and pH 4, which resulted in few CaSO4 crystallites on visibly undamaged pine and spruce needle surfaces. After 7 weeks of acid rain treatment there were CaSO4 crystallites scattered over the whole needle surface area and erosion of the epicuticular waxes could be observed occasionally. CaSO4 crystal formation later decreased, especially on the needles of seedlings treated at pH 3. Ca concentrations in the needles and roots of the seedlings and in the soil in the boxes were higher in the pH 3 treatments than elsewhere. The more abundant deposition of Ca oxalate crystallites on the inner walls of the epidermal and hypodermal cells of the spruce needles than on their outer walls was probably also connected with Ca leaching, caused by acid rain. Acid rain also delayed wax synthesis, as 2-month-old pine needles exposed to pH 3 and pH 4 had about 50% less wax than the water controls in early August. The needle surfaces of the southern provenances of spruce and pine seedlings were slightly less wettable after pH 4 treatment than after the control water treatment, because they probably benefited from N and S compounds in the irrigation water. The needle surfaces were more wettable in the pH 3 and water control seedlings than in the other treatments.

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 943
Author(s):  
Katri Nissinen ◽  
Virpi Virjamo ◽  
Antti Kilpeläinen ◽  
Veli-Pekka Ikonen ◽  
Laura Pikkarainen ◽  
...  

We studied the growth responses of boreal Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.) and silver birch (Betula pendula Roth) seedlings to simulated climate warming of an average of 1.3 °C over the growing season in a controlled field experiment in central Finland. We had six replicate plots for elevated and ambient temperature for each tree species. The warming treatment lasted for the conifers for three growing seasons and for the birch two growing seasons. We measured the height and diameter growth of all the seedlings weekly during the growing season. The shoot and root biomass and their ratios were measured annually in one-third of seedlings harvested from each plot in autumn. After two growing seasons, the height, diameter and shoot biomass were 45%, 19% and 41% larger in silver birch seedlings under the warming treatment, but the root biomass was clearly less affected. After three growing seasons, the height, diameter, shoot and root biomass were under a warming treatment 39, 47, 189 and 113% greater in Scots pine, but the root:shoot ratio 29% lower, respectively. The corresponding responses of Norway spruce to warming were clearly smaller (e.g., shoot biomass 46% higher under a warming treatment). As a comparison, the relative response of height growth in silver birch was after two growing seasons equal to that measured in Scots pine after three growing seasons. Based on our findings, especially silver birch seedlings, but also Scots pine seedlings benefitted from warming, which should be taken into account in forest regeneration in the future.


1989 ◽  
Vol 19 (11) ◽  
pp. 1402-1411 ◽  
Author(s):  
Toini Holopainen ◽  
Pekka Nygren

The effects of potassium deficiency and artificial acid precipitation, alone and in combination, on Scots pine (Pinussilvestris L.) needles were studied using transmission electron microscopy. The seedling material was grown in quartz sand culture and watered with nutrient solution containing 45, 20, 10, or 5 mg of potassium/L; the concentration of other nutrients was constant and equally available for all seedlings. A portion of the seedlings from each group received consecutive acidified water spraying of pH 4.5, 4.0, 3.5, and 3.0, each for 4 days with a 3-day resting period between applications. The potassium deficiency caused an increase in the proportional vacuolar space and severe vesiculation of the tonoplast. Irregularly shaped lipid structures increased in number in the cytoplasm, and lipid bodies also appeared in the vacuoles and occasionally in the chloroplasts. The symptoms related to potassium deficiency were more severe in the transfusion parenchyma cells than in the mesophyll. The lowest level of potassium produced almost complete disorganization of the cellular structures in the transfusion parenchyma tissue, but severe changes were also seen in the mesophyll. The simulated acid rain treatment caused the formation of protrusions in the chloroplasts and an increase in irregularly shaped lipid structures in the cytoplasm throughout the mesophyll tissue, but no clear symptoms were observed inside the bundle sheath. In general, the changes caused by acid rain in the chloroplasts were slight and did not cause serious disorganization of these organelles. When the seedlings were exposed to combination treatment, the typical symptoms of both exposures were observable. The results suggest that the stresses caused by potassium deficiency and short-term foliar acid rain treatment can be distinguished in the needle ultrastructure.


1981 ◽  
Vol 11 (4) ◽  
pp. 789-795 ◽  
Author(s):  
S. Thompson

When seedlings of a single seed source of Scots pine (Pinussylvestris L.) were raised for 26 weeks in a naturally lit, heated greenhouse, two types of shoot morphology were observed. Type 1 was that normally found in 1-year-old seedlings. Type 2 had a shoot morphology similar to that of seedlings raised outdoors for two growing seasons. When compared with type 1 plants, type 2 plants had an earlier start to shoot elongation, set their buds earlier, and stopped shoot elongation sooner. After one growing season, type 2 plants were shorter, had fewer stem units for shoot elongation in the second season, but carried a greater foliage biomass than 1-year-old type plants. After two seasons they remained shorter. Thus, plant rearing practices which result in the production of seedlings with this type of shoot morphology arc undesirable.The relationship between early "budsct," shoot morphology, and plant height suggests that the proportion of seedlings with a 2-year-old shoot morphology after one growing season in a heated greenhouse may be used as an early test for height growth potential in seed origins and possibly in progenies of north temperate pine species.


1994 ◽  
Vol 72 (3) ◽  
pp. 364-369 ◽  
Author(s):  
John N. A. Lott ◽  
Irene Ockenden ◽  
Patrice Kerr ◽  
Marcia West ◽  
Thelma Leech ◽  
...  

Phytate, the main mineral nutrient storage compound in seeds, is stored inside protein bodies. Phytate is usually concentrated in dense bodies called globoid crystals. In 1985, Lott and co-workers proposed that the balance of (Mg + Ca):K may be important in controlling globoid crystal formation and provided some experimental evidence to support this proposal. To test this hypothesis further, developing Cucurbita fruits were injected with sterile K salt solutions. Squash cotyledons generally have large globoid crystals and a relatively high (Mg + Ca):K ratio. We hypothesized that experimental reduction of the ratio by the addition of K would result in the alteration of the size and number of globoid crystals. Developing seeds were remarkably resistant to attempts to alter the elements taken up for storage. The elemental content of embryo tissues was measured quantitatively with neutron activation analysis. Controls plus those few samples showing a distinct shift in the ratio owing to elevated K content were analyzed further. Energy dispersive X-ray analysis of cryogenically prepared samples was used to study the elemental content of globoid crystals and transmission electron microscopy was used to study the ultrastructure of the protein bodies. The results provide additional support for the hypothesis being tested. Key words: phytate, globoid crystals, Cucurbita, seeds, mineral nutrients, protein bodies.


1987 ◽  
Vol 17 (8) ◽  
pp. 783-786 ◽  
Author(s):  
Karl-Anders Högberg

Surface planting and deep planting were compared with respect to water uptake and root development in the early stage of field establishment. The material consisted of containerized Scots pine (Pinussylvestris L.) and Norway spruce (Piceaabies (L.) Karst.) seedlings. For both species, surface planted seedlings showed less root egress 5 weeks after planting compared with deep planted. Needle conductance was lower for surface planted than deep planted pine seedlings. For pine seedlings high correlation was found between root egress and needle conductance 5 weeks after planting for surface planting but not for deep planting. It is concluded that surface planting increases the water stress risk during establishment. Evaporative water loss from the root ball and the upper soil layers is discussed as the main cause to this effect.


Author(s):  
Ilya E. Zlobin ◽  
Alexander V. Kartashov ◽  
Pavel P. Pashkovskiy ◽  
Yury V. Ivanov ◽  
Vladimir D. Kreslavski ◽  
...  

1992 ◽  
Vol 84 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Stefan Jansson ◽  
Ivar Virgin ◽  
Petter Gustafsson ◽  
Bertil Andersson ◽  
Gunnar Oquist

Sign in / Sign up

Export Citation Format

Share Document