parenchyma tissue
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 2)

Plant Disease ◽  
2021 ◽  
Author(s):  
Nrupali Patel ◽  
Radhika D Patel ◽  
Andrew Wyenandt ◽  
Donald Y Kobayashi

We previously reported an outbreak of bacterial leaf spot (BLS) caused by Pseudomonas cichorii occurring on sweet basil in New Jersey during the summer of 2018 (Patel et al. 2019), a growing season characterized by increased leaf wetness due to high humidity and unusually high levels of summer rains. Leaf spot was also observed, as a one-time event, on older mature leaves on romaine and escarole lettuce during that same year. Symptoms on escarole were observed as grayish brown-to-black concentric lesions on leaf parenchyma tissue, ranging from 1 mm to 1-2 cm in diameter. In more severely diseased samples, lesions coalesced to form larger necrotic areas giving a blight appearance. On occasion, infection was observed in leaf midveins as brownish gray necrosis. Symptoms on romaine lettuce were observed mostly as coalesced blackened lesions on leaf parenchyma tissue near margins with a rotted consistency that spread to the midvein in severe cases. Margins of leaf lesions were excised and macerated in sterile water before streaking onto Nutrient Agar (NA) and King’s medium B agar (KMB) (Schaad et al. 2001). Growth on both NA and KMB were predominantly cream-colored circular bacterial colonies with undulated margins. Colonies on KMB fluoresced blue under 365nm UV light. Two representative colonies isolated from each host were selected for further characterization. All isolated tested negative for levan production, positive for oxidase, negative for potato rot, negative for arginine dihydrolase, and induced a strong hypersensitive response on tobacco within 24 h, consistent with LOPAT descriptions for P. cichorii (Lelliott et al. 1966). A single strain from each host (ESC6F2 and Rom1-1) was further characterized genetically to confirm species. PCR analysis using two primers sets: 16S rRNA gene universal primers 27F/1492R and Hcr1 primers used to amplify a 520 bp region of the pathogenicity gene cluster hrcRST in P. cichorii (Patel et al. 2019; Cottyn et al. 2011). Partial 16S rDNA gene sequences were deposited in the GenBank database for each isolate (ESC6F2: MT974180; and Rom1-1: MT982172). Sequence comparisons of ESC6F2 and Rom1-1 shared 99% identity with each other and several P. cichorii strains within the GenBank database, including strain B5-2-1 isolated from sweet basil in NJ the same year (MK501753). The partial hrcRST locus (strain ESC6F2: MW048775 and Rom1-1: MW048774) shared 100% identity to each other and strain B5-2-1 (MK507764), and 99% identity with P. cichorii strain P18-1 (MH396007) isolated from Ocimum basilicum in Hawaii. Koch’s postulate was performed on escarole var. Full Heart and Romaine lettuce var. Ideal Cos to confirm pathogenicity of the isolated strains. Bacterial suspensions (1x107 cfu/ml) were syringe-injected (0.1 ml) into the leaf midribs, and pressure infiltrated into leaf parenchyma tissue of 3 plants. Control plants were inoculated with sterile water. Blackened necrosis developed within 72 h around bacteria-inoculation points, which expanded beyond inoculation points within a week. In contrast, control plants remained healthy and symptomless. Although significant crop loss occurred due to BLS on escarole and romaine lettuce, P. cichorii has not been isolated from diseased plant material since 2018. This suggests inoculum sources did not persist beyond 2018, or favorable environmental conditions for disease are inconsistent to cause noticeable damage to New Jersey crops. References: Cottyn, B., et al. 2011. Plant Pathol. 60:453. Lelliott, R. A., et al. 1966. J. Appl. Bacteriol. 29:470. Patel, N., et al. 2019. Plant Disease. 103:2666


2021 ◽  
Vol 9 (12) ◽  
pp. 2291-2301
Author(s):  
Wenting Ren ◽  
Fei Guo ◽  
Minghui Liu ◽  
Haocheng Xu ◽  
Hankun Wang ◽  
...  

2020 ◽  
Vol 13 ◽  
pp. 194008292092059 ◽  
Author(s):  
Thomas E. Marler ◽  
Benjamin E. Deloso ◽  
Gil N. Cruz

Cycad stem cuttings will develop adventitious roots if the open wound is first treated with a sealant to protect the exposed parenchyma tissue. The commercial pruning wound sealant that is often employed for this purpose is not available in many locations. We used commonly available products as a prophylactic sealant on Cycas edentata , Cycas micronesica , and Cycas nitida cuttings to determine efficacy for sealing the wound and enabling adventitious root formation. Success was quantified after 7 months in a sand propagation substrate. Mortality was 100% for control cuttings with no wound sealant and about 60% for cuttings with candle wax as the sealant. Cuttings that received petroleum jelly, lanolin paste, modeling clay, honeycomb wax, or commercial pruning sealant exhibited 100% survival. Success in adventitious root formation ranged from 75% to 92% among the five successful prophylactic treatments and did not differ among the species. The results indicated that four of the products we evaluated were as effective as commercial pruning sealant for treating the exposed parenchyma on Cycas stem cuttings and enabling asexual propagation success. The candle wax was less effective because it was brittle and cracked to expose the stem’s parenchyma tissue.


2019 ◽  
Vol 07 (02) ◽  
pp. E138-E143 ◽  
Author(s):  
Maximilien Barret ◽  
Sarah Leblanc ◽  
Alexandre Rouquette ◽  
Stanislas Chaussade ◽  
Benoit Terris ◽  
...  

Abstract Introduction Two devices are currently available to perform pancreatic radiofrequency ablation (P-RFA). Potential clinical indications might extend from the treatment of pancreatic cystic lesions to ablation of small pancreatic solid lesions or cytoreduction of advanced pancreatic adenocarcinomas, but more preclinical data from animal models are needed to optimize P-RFA operation. Methods P-RFA was performed under laparotomy and under endoscopic ultrasonographic guidance on the liver and pancreatic parenchyma of four live swine using the Habib EUS RFA (EMcision Ltd, London, UK) probe and the EUS-RA needle (Taewoong Medical, Gyeonggi-do, South Korea). Animals were sacrificed 2 hours after the procedure. Influence of tuning ablation time and power on tissue ablation were studied by histopathological assessment of the maximal depth of tissue damage on representative slides for each P-RFA shot. Results The Habib probe in the liver parenchyma resulted in tissue necrosis increasing within the range of 1.9 ± 0.5 mm (Power = 8 W, Time = 120 s) to 2.5 ± 1 mm (Power = 10 W, Time = 120 s). In the pancreatic parenchyma, tissue damage ranged from 3.1 ± 0.4 mm (Power = 8 W, Time = 120 s) to 2.3 ± 0.1 mm (12 W, 120 s) in depth. EUS RFA ablation of the liver parenchyma resulted in tissue damage ranging from 1.6 ± 0.2 mm (Power = 30 W, Time = 11 s) to 1.5 ± 0.1 mm (Power = 70 W, Time = 9 s); in the pancreas, ablation depth ranged from 3.6 ± 0.5 mm (Power = 30 W, Time = 15 s) to 3.8 ± 0.4 mm (Power = 70 W, Time = 11 s). Conclusion Both devices allow for effective ablation of pancreatic tissue within 1.5 to 3.8 mm around the RFA electrode, with a modest influence of tuning power settings. Specific settings are recommended for each of the devices studied. Ablation of larger lesions may require more repeat P-RFA shots in different locations rather than a simple modulation of ablation parameters.


2018 ◽  
Vol 28 (9) ◽  
pp. 093110 ◽  
Author(s):  
N. A. Valous ◽  
W. Xiong ◽  
N. Halama ◽  
I. Zörnig ◽  
D. Cantre ◽  
...  
Keyword(s):  

2018 ◽  
Vol 40 (2) ◽  
Author(s):  
Edilson Romais Schmildt ◽  
Layane Segantini Oliari ◽  
Rodrigo Sobreira Alexandre ◽  
Fábio Oseias dos Reis da Silva ◽  
Omar Schmildt

Abstract In Brazil, the main cultivated passion fruit species is Passiflora edulis, which is affected by Fusarium soil fungus. P. mucronata species stands out because it presents resistance to this fungus, being thus an alternative rootstock to yellow passion fruit. Therefore, the aim of this study was to evaluate the anatomy of mini-grafting by top cleft grafting and simple English type grafting, using shoot tips of adult P. edulis plants in clonal rootstocks of P. mucronata. When the rootstocks reached approximately 2.5 mm in diameter and 20 cm in height, grafting was carried out with Parafilm® tape fasteners and silicone clip. At the end of 60 days, histological analysis of the grafting region was performed to verify the formation of the scarring parenchyma tissue (callus). The filling of the mini-grafting cleft by callus was verified; however, there was no differentiation of the new vascular tissue at 60 days after grafting. During the performance of the simple English type grafting using Parafilm® tape, it was extremely difficult to encircle the tape and at the same time to join the bionts so that tissue junction is perfect. Mini-grafting by top cleft grafting using Parafilm® tape fastener is recommended.


Author(s):  
Ari Sunandar ◽  
Adi Pasah Kahar

<p class="IsiAbstrakIndo"><span lang="EN-GB">Indonesia is the origin and center of diversity of banana. One of an edible banana in Indonesia is Pisang Awak (</span><em><span lang="EN-GB">Musa paradisiaca</span></em><span lang="EN-GB"> cv. Awak ). In West Kalimantan, the ripe Pisang Awak has been processed into </span><em><span lang="EN-GB">sale</span></em><span lang="EN-GB"> (dried banana). The aims of this research were to describe the morphological and anatomical character of Pisang Awak in West Kalimantan, Indonesia. In this study, Pisang Awak were collected from Padang Tikar I village, Batu Ampar Sub-district, Kubu Raya district, West Kalimantan. Morphological characterizations were conducted by following the instruction on Descriptors for Banana (</span><em><span lang="EN-GB">Musa</span></em><span lang="EN-GB"> spp.) from IPGRI. The root, leaf blade, and petiole were fixed in FAA solution. Root, leaf, and petiole anatomy preparats were made by paraffin method. The lamina of Pisang Awak consisted of adaxial epidermis, two hypodermis layers, two palisade layers, spongy layer, bundle sheath cell, abaxial epidermis, laticifer. The petiole of Pisang Awak composed of three tissue systems, i.e., epidermis layer, parenchyma tissue and vascular tissue. The root of Pisang Awak consists of two epidermis layers, parenchyma and vascular cylinder. In the future, morphological and anatomical character in Pisang Awak could be applied as the basis of information for breeding programs of banana cultivars and classification.</span></p>


2017 ◽  
Vol 68 (18) ◽  
pp. 5137-5146 ◽  
Author(s):  
Pauline Videcoq ◽  
Adelin Barbacci ◽  
Carole Assor ◽  
Vincent Magnenet ◽  
Olivier Arnould ◽  
...  

2017 ◽  
Vol 2 (1) ◽  
pp. 19
Author(s):  
Itji Diana Daud

Connection between Zea mays L., Ostrinia furnacalis (Lep.:Pyralidae) and  Beauveria bassiana Vuill. The entomopatogen fungus, Beauveria bassiana (Balsamo), is obtained in the tissue of corn plant through submersion of seed in cinidia 1010/ml. Tissue observation showed that hifa B. bassiana appears when the plant attain the age of three weeks and when it reaches six weeks B bassiana appears in all sample plants. Hifa obtained in parenchyma tissue passively without causing illness the mother plant. The appearance of B. bassiana is remained until the 12th weeks of plant. Bio test of plan which contain the endofit of B. bassiana showed the percentage of tested insect mortality is 64%. The observation showed that the corn plant can still produce the toxin of beauverisin.


Sign in / Sign up

Export Citation Format

Share Document