Mitochondrial role in ischemia–reperfusion of rat hearts exposed to high-K+ cardioplegia and clonazepam: energetic and contractile consequences

2007 ◽  
Vol 85 (5) ◽  
pp. 483-496 ◽  
Author(s):  
A.E. Consolini ◽  
M.I. Ragone ◽  
P. Conforti ◽  
M.G. Volonté

The role of the mitochondrial Na/Ca-exchanger (mNCX) in hearts exposed to ischemia–reperfusion (I/R) and pretreated with cardioplegia (CPG) was studied from a mechano-calorimetric approach. No-flow ischemia (ISCH) and reperfusion (REP) were developed in isolated rat hearts pretreated with 10 µmol/L clonazepam (CLZP), an inhibitor of the mNCX, and (or) a high K+ – low Ca2+ solution (CPG). Left ventricular end diastolic pressure (LVEDP), pressure development during beats (P), and the steady heat release (Ht) were continuously measured and muscle contents of ATP and PCr were analyzed at the end of REP. During REP, Ht increased more than P, reducing muscle economy (P/Ht) and the ATP content. CPG induced an increase in P recovery during REP (to 90% ± 10% of preISCH) with respect to nonpretreated hearts (control, C, to 64% ± 10%, p < 0.05). In contrast, CLZP reduced P recovery of CPG-hearts (50% ± 6.4%, p < 0.05) and increased LVEDP in C hearts. To evaluate effects on sarcoplasmic reticulum (SR) function, ischemic hearts were reperfused with 10 mmol/L caffeine –36 mmol/L Na (C – caff – low Na). It increased LVEDP, which afterwards slowly relaxed, whereas Ht increased (by about 6.5 mW/g). CLZP sped up the relaxation with higher ΔHt, C – caff – low Na produced higher contracture and lower Ht in perfused than in ischemic hearts. Values of ΔHt were compared with reported fluxes of Ca2+-transporters, suggesting that mitochondria may be in part responsible for the ΔHt during C – caff – low Na REP. Results suggest that ISCH–REP reduced the SR store for the recovery of contractility, but induced Ca2+ movement from the mitochondria to the SR stores. Also, mitochondria and SR are able to remove cytosolic Ca2+ during overloads (as under caffeine), through the mNCX and the uniporter. CPG increases Ca2+ cycling from mitochondria to the SR, which contributes to the higher recovery of P. In contrast, CLZP produces a deleterious effect on ISCH–REP associated with higher heat release and reduced resynthesis of high energy phosphates, which suggests the induction of mitochondrial Ca cycling and uncoupling.

2014 ◽  
Vol 92 (5) ◽  
pp. 386-398 ◽  
Author(s):  
Patricia Bonazzola ◽  
María Inés Ragone ◽  
Alicia E. Consolini

Pyruvate (Pyr) was proposed as an additive to cold high-K+–low-Ca2+ cardioplegia (CPG) to protect the heart during surgery. We explored whether Pyr and CPG would work synergistically to protect rat hearts from stunning during ischemia–reperfusion (I/R). We measured the heat release and contractility of perfused ventricles during I/R, and the cytosolic and mitochondrial [Ca2+] in cardiomyocytes by confocal microscopy. We found that under cold-CPG (30 °C), 10 mmol·L−1 Pyr reduced the post-ischemic contractile recovery (PICR) as well as muscle economy, when added either before ischemia or during I/R, which was reversed by blockade of UCam. In noncardioplegic hearts, Pyr was cardioprotective when it was present during I/R, more so at 37 °C than at 30 °C, with improved economy. In cardiomyocytes, the addition of Pyr to CPG slightly increased the mitochondrial [Ca2+] but decreased cytosolic [Ca2+]. The results suggest that Pyr only protects hearts from stunning when present before ischemia and during reperfusion, and that it dampens the cardioprotective properties of CPG. The mechanisms underlying such different behavior depend on the dynamic balance between Pyr stimulation of the energetic state and mitochondrial Ca2+ uptake. Our results support the use of Pyr in stunned hearts, but not in cold high-K+ cardioplegia.


2005 ◽  
Vol 288 (6) ◽  
pp. H3011-H3015 ◽  
Author(s):  
Kenya Nishizawa ◽  
Paul E. Wolkowicz ◽  
Tadashi Yamagishi ◽  
Ling-Ling Guo ◽  
Martin M. Pike

Whereas activation of ATP-dependent potassium (KATP) channels greatly improves postischemic myocardial recovery, the final effector mechanism for KATP channel-induced cardioprotection remains elusive. RhoA is a GTPase that regulates a variety of cellular processes known to be involved with KATP channel cardioprotection. Our goal was to determine whether the activity of a key rhoA effector, rho kinase (ROCK), is required for KATP channel-induced cardioprotection. Four groups of perfused rat hearts were subjected to 36 min of zero-flow ischemia and 44 min of reperfusion with continuous measurements of mechanical function and 31P NMR high-energy phosphate data: 1) untreated, 2) pinacidil (10 μM) to activate KATP channels, 3) fasudil (15 μM) to inhibit ROCK, and 4) both fasudil and pinacidil. Pinacidil significantly improved postischemic mechanical recovery [39 ± 16 vs. 108 ± 4 mmHg left ventricular diastolic pressure (LVDP), untreated and pinacidil, respectively]. Fasudil did not affect reperfusion LVDP (41 ± 13 mmHg) but completely blocked the marked improvement in mechanical recovery that occurred with pinacidil treatment (54 ± 15 mmHg). Substantial attenuation of the postischemic energetic recovery was also observed. These data support the hypothesis that ROCK activity plays a role in KATP channel-induced cardioprotection.


1999 ◽  
Vol 91 (5) ◽  
pp. 1349-1349 ◽  
Author(s):  
Sanjiv Mathur ◽  
Parviz Farhangkhgoee ◽  
Morris Karmazyn

Background Sodium ion-hydrogen ion (Na(+)-H(+)) exchange inhibitors are effective cardioprotective agents. The N(+)-H(+) exchange inhibitor HOE 642 (cariporide) has undergone clinical trials in acute coronary syndromes, including bypass surgery. Propofol and sevoflurane are also cardioprotective via unknown mechanisms. The authors investigated the interaction between propofol and HOE 642 in the ischemic reperfused rat heart and studied the role of adenosine triphosphate-sensitive potassium (K(ATP)) channels in the myocardial protection associated with propofol and sevoflurane. Methods Isolated rat hearts were perfused by the Langendorff method at a constant flow rate, and left ventricular function and coronary pressures were assessed using standard methods. Energy metabolites were also determined. To assess the role of K(ATP) channels, hearts were pretreated with the K(ATP) blocker glyburide (10 microM). Hearts were then exposed to either control buffer or buffer containing HOE 642 (5 microM), propofol (35 microM), sevoflurane (2.15 vol%), the K(ATP) opener pinacidil (1 microM), or the combination of propofol and HOE 642. Each heart was then subjected to 1 h of global ischemia followed by 1 h of reperfusion. Results Hearts treated with propofol, sevoflurane, pinacidil, or HOE 642 showed significantly higher recovery of left ventricular developed pressure and reduced end-diastolic pressures compared with controls. The combination of propofol and HOE 642 provided superior protection toward the end of the reperfusion period. Propofol, sevoflurane, and HOE 642 also attenuated the onset and magnitude of ischemic contracture and preserved high-energy phosphates (HEPs) compared with controls. Glyburide attenuated the cardioprotective effects of sevoflurane and abolished the protection observed with pinacidil. In contrast, glyburide had no effect on the cardioprotection associated with propofol treatment. Conclusion HOE 642, propofol, and sevoflurane provide cardioprotection via different mechanisms. These distinct mechanisms may allow for the additive and superior protection observed with the combination of these anesthetics and HOE 642.


2001 ◽  
Vol 79 (9) ◽  
pp. 761-767 ◽  
Author(s):  
Rana M Temsah ◽  
Hideo Kumamoto ◽  
Nobuakira Takeda ◽  
Naranjan S Dhalla

Although the involvement of serotonin in exacerbating vascular abnormalities in ischemic heart disease has been established, its role in mediating changes in cardiac function due to ischemia reperfusion (IR) is poorly understood. The aim of this study was to investigate the effect of a serotonin blocker, sarpogrelate (5-HT2A antagonist), in preventing cardiac injury due to IR. Isolated rat hearts were subjected to 30 min of global ischemia followed by 1 h of reperfusion. Sarpogrelate (50 nM-0.9 µM) was infused 10 min before ischemia as well as during the reperfusion period. The IR-induced changes in left ventricular developed pressure, left ventricular end diastolic pressure, rate of pressure development, and rate of pressure decay were attenuated (P < 0.05) with sarpogrelate treatment. Sarpogrelate also decreased the ultrastructural damage and improved the high energy phosphate level in the IR hearts (P < 0.05). This study provides evidence for the attenuation of IR-induced cardiac injury by 5-HT2A receptor blockade and supports the view that serotonin may contribute to the deleterious effects of IR in the heart.Key words: ischemia reperfusion, sarpogrelate, serotonin receptor blockade.


1991 ◽  
Vol 260 (1) ◽  
pp. H6-H12 ◽  
Author(s):  
S. M. Humphrey ◽  
P. B. Garlick

Nuclear magnetic resonance (NMR) spectroscopy detects only free, unbound metabolites. We have therefore compared the free high-energy phosphate content of isolated perfused rat hearts (determined by 31P-NMR) with the total high-energy phosphates of the same hearts (determined by chemical analysis) to determine the fractions, if any, that are NMR invisible. Aerobic perfusion (40 min at 37 degrees C, Pi-free Krebs buffer) was followed by 10, 14, or 18 min total global ischemia and 30 min reperfusion (n = 6 in each group). Fully relaxed 31P-NMR spectra (40 scans using 90 degrees pulses at 15-s intervals) were collected at various times throughout the protocol, and the signal intensities of the beta-phosphate of ATP, phosphocreatine (PCr), and Pi were quantified using methylenediphosphonate as an external standard. Hearts were freeze clamped either before ischemia or at the end of reperfusion and were chemically assayed for ATP, PCr, and Pi. After 40 min of normoxia, the ATP and PCr contents determined by NMR were almost identical to the values determined by chemical analysis. However, only 39 +/- 8% of the total Pi was NMR visible. After reperfusion, after 14 or 18 min of ischemia, the proportion of NMR-visible ATP had decreased to 64 +/- 9% (P less than 0.005). After reperfusion after 18 min ischemia, the proportion of NMR-visible Pi had increased to 76 +/- 10% (P less than 0.05). In conclusion, whereas the total cellular content of PCr is always NMR visible, ischemia-reperfusion can alter the fraction of NMR-visible ATP and Pi.


2020 ◽  
Vol 21 (18) ◽  
pp. 6548
Author(s):  
Naseer Ahmed ◽  
Javeria Farooq ◽  
Soban Sadiq ◽  
Sultan Ayoub Meo ◽  
Azam Jan ◽  
...  

During heart transplantation, donor heart leads to reduced oxygen supply resulting in low level of high energy phosphate (HEP) reserves in cardiomyocyte. Lower HEP is one of the underlying reasons of cell death due to ischemia. In this study we investigated the role of Fingolimod (FTY720) in heart transplantation ischemia. Eight groups of Sprague-Dawley rats (n = 5 for each subgroup) were made, A1 and C1 were given FTY720 1 mg/kg while B1 and D1 were given normal saline. The hearts were implanted into another set of similar rats after preservation period of 1 h at 4–8 °C. Significantly higher Left ventricular systolic pressure (LVSP), dP/dT maximum (p < 0.05), dP/dT minimum (p < 0.05) were recorded in the FTY720 treated group after 24 h of reperfusion while after 1 h of reperfusion, there were no significant differences in LVSP, maximum and negative dP/dT, and Left ventricular end diastolic pressure (LVEDP) between the control and the FTY720-treated transplant groups. Coronary blood flow (CBF) was enhanced (p < 0.05) in the FTY720 treated group after 1 and 24 h. ATP p < 0.001, p < 0.05 at 1 and 24 h, ADP p < 0.001, p > 0.05 at 1 and 24 h, and phosphocreatine p < 0.05, p > 0.05 at 1 and 24 h were better preserved by FTY720 treatment as compared to control group. The study concluded that pretreatment of grafted hearts with FTY720 improved hemodynamics, CBF, high energy phosphate reserves, reduces the peroxynitrite level and poly (ADP ribose) polymerase (PARP) inhibition that prevents ischemia-reperfusion injury.


2004 ◽  
Vol 287 (3) ◽  
pp. H1039-H1045 ◽  
Author(s):  
Matthias Spindler ◽  
Klaus Meyer ◽  
Hinrik Strömer ◽  
Andrea Leupold ◽  
Ernest Boehm ◽  
...  

The creatine kinase (CK) system is involved in the rapid transport of high-energy phosphates from the mitochondria to the sites of maximal energy requirements such as myofibrils and sarcolemmal ion pumps. Hearts of mice with a combined knockout of cytosolic M-CK and mitochondrial CK (M/Mito-CK−/−) show unchanged basal left ventricular (LV) performance but reduced myocardial high-energy phosphate concentrations. Moreover, skeletal muscle from M/Mito-CK−/− mice demonstrates altered Ca2+ homeostasis. Our hypothesis was that in CK-deficient hearts, a cardiac phenotype can be unmasked during acute stress conditions and that susceptibility to ischemia-reperfusion injury is increased because of altered Ca2+ homeostasis. We simultaneously studied LV performance and myocardial Ca2+ metabolism in isolated, perfused hearts of M/Mito-CK−/− ( n = 6) and wild-type (WT, n = 8) mice during baseline, 20 min of no-flow ischemia, and recovery. Whereas LV performance was not different during baseline conditions, LV contracture during ischemia developed significantly earlier (408 ± 72 vs. 678 ± 54 s) and to a greater extent (50 ± 2 vs. 36 ± 3 mmHg) in M/Mito-CK−/− mice. During reperfusion, recovery of diastolic function was impaired (LV end-diastolic pressure: 22 ± 3 vs. 10 ± 2 mmHg), whereas recovery of systolic performance was delayed, in M/Mito-CK−/− mice. In parallel, Ca2+ transients were similar during baseline conditions; however, M/Mito-CK−/− mice showed a greater increase in diastolic Ca2+ concentration ([Ca2+]) during ischemia (237 ± 54% vs. 167 ± 25% of basal [Ca2+]) compared with WT mice. In conclusion, CK-deficient hearts show an increased susceptibility of LV performance and Ca2+ homeostasis to ischemic injury, associated with a blunted postischemic recovery. This demonstrates a key function of an intact CK system for maintenance of Ca2+ homeostasis and LV mechanics under metabolic stress conditions.


1991 ◽  
Vol 261 (4) ◽  
pp. L39-L44 ◽  
Author(s):  
V. I. Kapelko ◽  
V. I. Veksler ◽  
M. I. Popovich ◽  
R. Ventura-Clapier

Changes in high-energy phosphate content and cardiac contractile function of isolated rat hearts as well as changes in Ca2+ sensitivity and mitochondrial respiration of myocardial skinned fibers were assessed in hereditary cardiomyopathies and in cardiomyopathies induced by chronic treatment with adriamycin or norepinephrine, by autoimmunization, by diabetes, or by creatine deficiency. The sum of ATP and phosphocreatine contents as well as cardiac output at standard load conditions was substantially lower in almost all groups. The common features of cardiac pump failure were mild bradycardia, elevated left ventricular (LV) diastolic pressure, and stiffness that limited cardiac contractile adaptation to volume or resistance loads. The LV diastolic stiffness at maximal functional load was inversely correlated with high-energy phosphate content. Increased myofibrillar sensitivity to Ca2+ and defective function of mitochondrial creatine kinase were found in skinned myocardial fibers. These results suggested that both increased myofibrillar Ca2+ sensitivity and energy deficiency within myofibrils may contribute to increased myocardial stiffness. Increased stiffness limits LV filling but facilitates pressure development, which partly compensates for decreased contractility of cardiomyopathic hearts. cardiac contractile function; high-energy phosphates; isolated heart; myocardial stiffness


1993 ◽  
Vol 264 (3) ◽  
pp. H670-H678 ◽  
Author(s):  
K. Nakamura ◽  
H. Kusuoka ◽  
G. Ambrosio ◽  
L. C. Becker

Although ATP derived from glycolysis represents only a small fraction of total myocardial ATP production, metabolic compartmentation may result in preferential use of glycolytic ATP for certain membrane activities, including pumping of Ca2+ from the cytoplasm. We tested this hypothesis by looking for evidence of Ca2+ overload in normoxic perfused rabbit hearts given iodoacetate (IAA, 50 microM) to block glycolysis and isoproterenol (Iso, 0.05 microM) to stimulate Ca2+ entry. The hearts beat isovolumically and were perfused with 16 mM glucose and 5 or 10 mM pyruvate (to preserve oxidative metabolism) in a superconducting magnet for 31P-nuclear magnetic resonance (NMR) measurements of high energy phosphates or 19F-NMR measurements of intracellular free Ca2+ concentration ([Ca2+]i). IAA by itself had no effect on left ventricular (LV) developed pressure, end-diastolic pressure, pressure-rate product, or tissue high-energy phosphates. During exposure to Iso, mean LV end-diastolic pressure increased from 10.7 to 49.3 mmHg in hearts pretreated with IAA (n = 7) but did not change in control hearts (n = 7). During Iso, there were substantial reductions in developed pressure, ATP, and phosphocreatine in IAA-treated hearts but not in control hearts. After exposure to IAA and Iso, a doubling of diastolic [Ca2+]i was observed with 19F-NMR. In IAA-treated hearts, reduction of perfusate Ca2+ concentration from 2.5 to 0.6 mM during Iso exposure (n = 6) prevented the mechanical dysfunction and decrease in high-energy phosphates. These findings suggest that glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation.


1991 ◽  
Vol 261 (4) ◽  
pp. 39-44 ◽  
Author(s):  
V. I. Kapelko ◽  
V. I. Veksler ◽  
M. I. Popovich ◽  
R. Ventura-Clapier

Changes in high-energy phosphate content and cardiac contractile function of isolated rat hearts as well as changes in Ca2+ sensitivity and mitochondrial respiration of myocardial skinned fibers were assessed in hereditary cardiomyopathies and in cardiomyopathies induced by chronic treatment with adriamycin or norepinephrine, by autoimmunization, by diabetes, or by creatine deficiency. The sum of ATP and phosphocreatine contents as well as cardiac output at standard load conditions was substantially lower in almost all groups. The common features of cardiac pump failure were mild bradycardia, elevated left ventricular (LV) diastolic pressure, and stiffness that limited cardiac contractile adaptation to volume or resistance loads. The LV diastolic stiffness at maximal functional load was inversely correlated with high-energy phosphate content. Increased myofibrillar sensitivity to Ca2+ and defective function of mitochondrial creatine kinase were found in skinned myocardial fibers. These results suggested that both increased myofibrillar Ca2+ sensitivity and energy deficiency within myofibrils may contribute to increased myocardial stiffness. Increased stiffness limits LV filling but facilitates pressure development, which partly compensates for decreased contractility of cardiomyopathic hearts. cardiac contractile function; high-energy phosphates; isolated heart; myocardial stiffness


Sign in / Sign up

Export Citation Format

Share Document