Inhibition of hypoxic pulmonary vasoconstriction by dipyridamole is not platelet mediated

1977 ◽  
Vol 55 (3) ◽  
pp. 448-451 ◽  
Author(s):  
Johannes Mlczoch ◽  
E. Kenneth Weir ◽  
Robert F. Grover

Dipyridamole, which is known to alter platelet function, has also been shown to reduce hypoxic pulmonary vasoconstriction. This latter effect could result from dipyridamole either acting on a platelet-mediated system, or acting directly on pulmonary vascular smooth muscle. To investigate these two possibilities, normal dogs were compared with dogs rendered thrombocytopenic by a platelet antiserum. Compared with the hypoxic pressor response before drug treatment, the hypoxic response following dipyridamole was only 32% as great in the normal dogs and only 38% as great in the thrombocytopenic dogs. Thus, dipyridamole was no less effective in reducing the hypoxic pressor response in the virtual absence of platelets. This supports a direct effect of dipyridamole on pulmonary vascular smooth muscle, which could be mediated by an increase in adenosine levels.

1976 ◽  
Vol 41 (2) ◽  
pp. 211-215 ◽  
Author(s):  
E. K. Weir ◽  
J. Mlczoch ◽  
J. Seavy ◽  
J. J. Cohen ◽  
R. F. Grover

The literature suggests that platelets might help mediate the pulmonary vascular pressor response to hypoxia. This study evaluated the hypoxic response in dogs rendered acutely thrombocytopenic by the administration of platelet antiserum. Between 30 and 90 min after the antiserum the pulmonary vasoconstrictor response to hypoxia was virtually abolished, but subsequently returned at a time when the number of circulating platelets remained very low. The prior administration of meclofenamate completely preserved the hypoxic response, though the platelet count still fell precipitously. We conclude that circulating platelets are not necessary for hypoxic vasoconstriction. It is possible that the reaction between platelets and antiserum evokes the synthesis of a dilator prostaglandin which might be responsible for the temporary inhibition of the pressor response to hypoxia but this remains to be proven.


1993 ◽  
Vol 265 (5) ◽  
pp. H1523-H1528 ◽  
Author(s):  
D. G. McCormack ◽  
N. A. Paterson

In pulmonary inflammatory processes such as pneumonia there is diminished hypoxic pulmonary vasoconstriction (HPV). We investigated whether the attenuated HPV in pneumonia is a due to excess nitric oxide (NO) release. Sprague-Dawley rats were anesthetized, and a slurry (0.06 ml) of infected agar beads (containing 6 x 10(5) Pseudomonas aeruginosa organisms) or control (sterile) beads was then injected into a distal bronchus through a tracheotomy. After the establishment of a chronic P. aeruginosa pneumonia (7-10 days later) animals were instrumented for hemodynamic monitoring, and the response to exposure to hypoxic gas (fraction of inspired O2 = 0.08) was recorded before and after the administration of NG-monomethyl-L-arginine (L-NMMA; 50 mg/kg), an inhibitor of NO synthesis. The hypoxic pressor response, as assessed by the absolute increase in pulmonary arterial pressure (PAP) and total pulmonary resistance (TPR), was reduced in infected animals compared with control animals. The change in PAP and TPR was 8.5 +/- 0.7 and 0.053 +/- 0.007, respectively, in control animals compared with 5.9 +/- 0.5 and 0.041 +/- 0.011 in infected animals. After L-NMMA the increase in PAP and TPR during hypoxia was greater in both control and infected animals. However, treatment with L-NMMA did not affect the difference between control and infected animals. We conclude that excess release of NO does not account for the attenuated hypoxic pressor response in pneumonia.


1985 ◽  
Vol 248 (1) ◽  
pp. H55-H60 ◽  
Author(s):  
J. Herget ◽  
I. F. McMurtry

It can be postulated that inhibition of lung tissue Na+-K+-ATPase might potentiate hypoxic pulmonary vasoconstriction by depolarizing some excitable cell or, in contrast, that it might blunt the hypoxic response by reducing cellular metabolic rate and sensitivity to hypoxia. Thus the purpose of this study was to test in isolated rat lungs whether hypoxic pressor reactivity was related inversely or positively to Na+-K+-ATPase activity. Dose-pressor response curves to hypoxia, angiotensin II, or KCl were measured under control conditions and after exposure either to one of two inhibitors of Na+-K+-ATPase, ouabain, and low-K+ solution or to a stimulator of Na+-K+ pumping, aldosterone. Ouabain and low K+ depressed the response to hypoxia but had little effect on that to angiotensin II. The response to KCl was increased by ouabain. Aldosterone potentiated the hypoxic response. These results do not support the idea that membrane depolarization due to inhibition Na+-K+ pumping is a component of hypoxic vasoconstriction. They do suggest a positive relationship between Na+-K+-ATPase activity and hypoxic pressor reactivity and are consistent with the idea that Na+-K+-ATPase activity might influence hypoxic reactivity indirectly by altering cellular energy metabolism. It is also possible that the results were somehow due to changes in intracellular [Na+] or transmembrane Na+ gradient, rather than to changes in energy metabolism.


1990 ◽  
Vol 68 (1) ◽  
pp. 253-259 ◽  
Author(s):  
C. M. Tseng ◽  
M. McGeady ◽  
T. Privett ◽  
A. Dunn ◽  
J. T. Sylvester

To evaluate leukotriene (LT) C4 as a mediator of hypoxic pulmonary vasoconstriction, we examined the effects of FPL55712, a putative LT antagonist, and indomethacin, a cyclooxygenase inhibitor, on vasopressor responses to LTC4 and hypoxia (inspired O2 tension = 25 Torr) in isolated ferret lungs perfused with a constant flow (50 ml.kg-1.min-1). Pulmonary arterial injections of LTC4 caused dose-related increases in pulmonary arterial pressure during perfusion with physiological salt solution containing Ficoll (4 g/dl). FPL55712 caused concentration-related inhibition of the pressor response to LTC4 (0.6 micrograms). Although 10 micrograms/ml FPL55712 inhibited the LTC4 pressor response by 61%, it did not alter the response to hypoxia. At 100 microgram/ml, FPL55712 inhibited the responses to LTC4 and hypoxia by 73 and 71%, respectively, but also attenuated the vasoconstrictor responses to prostaglandin F2 alpha (78% at 8 micrograms), phenylephrine (68% at 100 micrograms), and KCl (51% at 40 mM). At 0.5 microgram/ml, indomethacin significantly attenuated the pressor response to arachidonic acid but did not alter responses to LTC4 or hypoxia. These results suggest that in isolated ferret lungs 1) the vasoconstrictor response to LTC4 did not depend on release of cyclooxygenase products and 2) LTC4 did not mediate hypoxic vasoconstriction.


1984 ◽  
Vol 56 (5) ◽  
pp. 1340-1346 ◽  
Author(s):  
M. L. Morganroth ◽  
J. T. Reeves ◽  
R. C. Murphy ◽  
N. F. Voelkel

We hypothesized that leukotrienes are involved in hypoxic pulmonary vasoconstriction, since they are pulmonary vasoconstrictors and cells capable of producing leukotrienes are located in the lung near resistance vessels. We investigated in isolated perfused rat lungs whether three structurally unrelated blockers [diethylcarbamazine citrate (DEC), U-60257, and FPL 55712] of leukotriene synthesis or action block hypoxic pulmonary vasoconstriction. DEC blocked ongoing and subsequent hypoxic pressor responses while minimally affecting the angiotensin II pressor response. The inhibition of the hypoxic pressor response by DEC was not affected by cyclooxygenase or H1-receptor blockers. Potassium-induced vasoconstriction, which is dependent on calcium entry, was largely blocked by verapamil but not by DEC, suggesting that DEC was not acting primarily as a calcium-entry blocker. U-60257 blocked the hypoxic pressor response without inhibiting the pressor response to angiotensin II or potassium chloride. FPL 55712, a leukotriene end-organ blocker, in a dose which inhibited vasoconstriction caused by exogenous leukotriene C4, inhibited the pressor response to hypoxia but not to angiotensin II. We conclude that leukotriene inhibitors preferentially inhibit hypoxic pulmonary vasoconstriction in isolated perfused adult rat lungs.


1988 ◽  
Vol 64 (1) ◽  
pp. 435-440 ◽  
Author(s):  
N. A. Paterson ◽  
J. T. Hamilton ◽  
A. Yaghi ◽  
D. S. Miller

The aim of the present study was to compare the effect of reduced oxygenation on the contractions of pulmonary vascular and airway smooth muscle induced by leukotriene D4 (LTD4) with those induced by histamine (an agonist with similar mechanisms of smooth muscle contraction) and KCl (a voltage-dependent stimulus). During hypoxia (PO2: 40 +/- 4 Torr) the responses of isolated porcine pulmonary artery and vein spiral strips to LTD4 increased approximately three- and two-fold, respectively, and the vein also exhibited an augmented response to histamine. The augmentation was blunted (LTD4) or reversed (histamine) during anoxia (PO2: 0 +/- 2 Torr). Responses to KCl were not systematically altered by reduced oxygenation. In contrast, the contractions of the guinea pig parenchymal lung strip by all three agonists were generally suppressed by reduced oxygenation. After reoxygenation, the contractile responses of each of the three smooth muscle preparations were generally increased compared with previous and concurrent base-line observations, particularly the LTD4-induced pulmonary vein contraction that increased approximately sevenfold after reoxygenation after anoxia. The contribution (if any) of leukotrienes to hypoxic pulmonary vasoconstriction may reflect increased vascular responsiveness to leukotrienes during hypoxia as well as (or instead of) increased leukotriene release.


1977 ◽  
Vol 42 (6) ◽  
pp. 903-908 ◽  
Author(s):  
J. M. Alexander ◽  
M. D. Nyby ◽  
K. A. Jasberg

Hypoxic pulmonary vasoconstriction in blood-perfused isolated dog lungs progressively diminishes with repeated hypoxic challenges. We investigated the role of prostaglandins in effecting the decay of the hypoxic response by using a double perfusion preparation that could separately perfuse the right and left lungs of a single dog. Degeneration of this response was reversed by the addition of prostaglandin (PG) synthesis inhibitors, aspirin, or indomethacin. Various PG's known to be produced by the lung (PGE1, PGE2, and PGF2alpha), were infused, and only PGE1 abolished hypoxic pulmonary vasoconstriction. Since other workers have shown that lungs can synthesize and release PG's in response to various stimuli, we postulate that PGE1 synthesis in isolated lungs may increase and thereby cause the degeneration of the hypoxic response. The addition of aspirin or indomethacin could inhibit the synthesis of PGE1 and thereby restore hypoxic pulmonary vasoconstriction.


1976 ◽  
Vol 41 (5) ◽  
pp. 714-718 ◽  
Author(s):  
E. K. Weir ◽  
I. F. McMurtry ◽  
A. Tucker ◽  
J. T. Reeves ◽  
R. F. Grover

Prostaglandins are naturally occurring substances with powerful vasoactive effects that are released from tissues during hypoxia or ischemia. Several workers have suggested that a prostaglandin may help to mediate the pulmonary vascular pressor response to alveolar hypoxia. To investigate this possibility, we have measured the pressor responses to hypoxia before and after prostaglandin synthesis antagonism with meclofenamate in eight anesthetized dogs, two groups of awake calves (n=10 and =5), and nine isolated, perfused rat lungs. In addition, synthesis was inhibited by the use of indomethacin in nine additional dogs. The stability of the pulmonary vascular response to repeated hypoxic challenges was demonstrated in nine other dogs. In each species and with both prostaglandin antagonists, the pulmonary pressorresponses to hypoxia were significantly increased rather than reduced. We conclude that prostaglandins do not mediate the pulmonary vasoconstriction caused by hypoxia. The consistent increase observed suggests that hypoxic vasoconstriction stimulates prostaglandin synthesis, the net effect of which is pulmonary vasodilatation which opposes the constriction.


Sign in / Sign up

Export Citation Format

Share Document