Similar poststimulatory pressor responses with different mechanisms in response to excitation of the locus coeruleus before and after acute adrenalectomy

1987 ◽  
Vol 65 (6) ◽  
pp. 1136-1141 ◽  
Author(s):  
Guy Drolet ◽  
Pierre Gauthier

Electrical stimulation of the locus coeruleus in anesthetized rats evoked a biphasic pressor response consisting of an initial sharp rise in blood pressure at the onset of stimulation, followed by a second elevation after cessation of the stimulus. This response, which was accompanied by an increase in plasma noradrenaline and adrenaline levels, was stable and could be easily reproduced over time. Sympathectomy by administration of guanethidine selectively abolished the primary pressor response. β-Adrenergic blockade by intravenous administration of sotalol enhanced the secondary pressor response without affecting the primary component. Adrenal demedullation performed 24–48 h before the experiments selectively prevented the secondary pressor component. In contrast, acute adrenalectomy carried out during the experiment to impair the adrenomedullary secretions eliminated the secondary pressor response to stimulation of the locus coeruleus only in sympathectomized or in sotalol-treated rats but not in intact rats in which the response persisted. The latter, however, could be abolished by the administration of either guanethidine or sotalol, and it disappeared following repeated stimulation of the locus coeruleus. The study demonstrates that similar poststimulatory pressor responses with different underlying mechanisms can be elicited on excitation of the locus coeruleus before and after acute adrenalectomy in the rat. The results also suggest that intraneuronal adrenaline may be involved in the response evoked in acutely adrenalectomized animals.

1988 ◽  
Vol 66 (2) ◽  
pp. 213-221
Author(s):  
Pierre Gauthier

Electrical stimulation (100 Hz, 1 ms, 150 μA, 10 s) of the anterior hypothalamus in chloralose-anesthetized rats evoked a biphasic pressor response consisting of an initial sharp rise in arterial pressure at the onset of stimulation, followed by a second elevation after cessation of the stimulus. This response was accompanied by an increase in plasma noradrenaline and adrenaline levels. Peripheral sympathectomy with guanethidine selectively abolished the primary phase of the biphasic pressor response, while bilateral removal of the adrenal medulla eliminated only the secondary component. After α-adrenergic blockade with phentolamine, the primary phase of the stimulation-induced response was reduced while the secondary pressor component was blocked and replaced by a significant hypotension. The intravenous administration of sotalol enhanced the secondary pressor component without affecting the stimulation-induced plasma noradrenaline and adrenaline responses. After treatment with atropine, the secondary pressor effect was also potentiated, as the reflex bradycardia normally associated with the response was eliminated. A subsequent administration of sotalol in these rats further potentiated the secondary pressor component to stimulation. In rats treated with atropine and sotalol, the sympathetic vasomotor and the adrenomedullary pressor responses could be dissociated according to thresholds and stimulus frequency or current–response characteristics. The results suggest that in intact rats, adrenaline-induced vasodilation and reflex cardiac inhibition contribute to either reduce or mask the adrenomedullary component of the biphasic pressor response evoked by stimulation of the anterior hypothalamus. The study also raises the hypothesis of a dual regulation of both components of the sympathetic system in the anterior hypothalamic region.


1994 ◽  
Vol 267 (1) ◽  
pp. R309-R315 ◽  
Author(s):  
Y. Hirooka ◽  
J. W. Polson ◽  
R. A. Dampney

Excitatory amino acid (EAA) receptors in the rostral part of the ventrolateral medulla (VLM) have been shown to mediate pressor responses elicited by stimulation of various peripheral afferent fibers as well as other central nuclei. This study tested the hypothesis that these receptors are a critical component in the central pathway mediating the powerful pressor response that is produced by stimulation of a group of neurons within a circumscribed region in the rostral dorsomedial medulla (RDM). In anesthetized rabbits, the pressor response elicited by unilateral microinjection of glutamate into this RDM region was measured before and after injection of kynurenic acid (Kyn), a broad-spectrum EAA receptor antagonist, into the physiologically identified pressor region of either the ipsilateral or contralateral rostral VLM. The pressor response to RDM stimulation was greatly reduced (to 24 +/- 4% of control) 5-10 min after injection of Kyn (but not the vehicle solution) into the ipsilateral rostral VLM; this response returned completely to its control value within 30-60 min after Kyn injection. By contrast, after Kyn injection into the contralateral rostral VLM, the pressor response to RDM stimulation was not affected (106 +/- 15% of control). The results indicate that the descending pressor pathway from the RDM to the spinal cord is mediated by EAA receptors in the rostral VLM pressor region. Furthermore, the pathway from the RDM to the rostral VLM is predominantly, if not exclusively, ipsilateral.


2005 ◽  
Vol 288 (6) ◽  
pp. G1195-G1198 ◽  
Author(s):  
Shi Liu ◽  
Lijie Wang ◽  
J. D. Z. Chen

Gastric electrical stimulation (GES) has been shown to alter motor and sensory functions of the stomach. However, its effects on other organs of the gut have rarely been investigated. The study was performed in 12 dogs implanted with two pairs of electrodes, one on the serosa of the stomach and the other on the colon. The study was composed of two experiments. Experiment 1 was designed to study the effects of GES on rectal tone and compliance in nine dogs compared with colonic electrical stimulation (CES). Rectal tone and compliance were assessed before and after GES or CES. Experiment 2 was performed to study the involvement of sympathetic pathway in 8 of the 12 dogs. The rectal tone was recorded for 30–40 min at baseline and 20 min after intravenous guanethidine. GES or CES was given for 20 min 20 min after the initiation of the infusion. It was found that both GES and CES reduced rectal tone with comparable potency. Rectal compliance was altered neither with GES, nor with CES. The inhibitory effect of GES but not CES on rectal tone was abolished by an adrenergic blockade, guanethidine. GES inhibited rectal tone with a comparable potency with CES but did not alter rectal compliance. The inhibitory effect of GES on rectal tone is mediated by the sympathetic pathway. It should be noted that electrical stimulation of one organ of the gut may have a beneficial or adverse effect on another organ of the gut.


1990 ◽  
Vol 259 (5) ◽  
pp. R955-R962
Author(s):  
B. H. Machado ◽  
M. J. Brody

We showed previously that activation of nucleus ambiguus (NA) induced bradycardia and increased arterial pressure. In this study, we compared responses produced by electrical and chemical (glutamate) stimulation of NA and adjacent rostral ventrolateral medulla (RVLM). Equivalent pressor responses were elicited from both areas. However: 1) The response from RVLM was elicited at a lower frequency. 2) Regional vascular resistance changes were different, i.e., electrical stimulation of NA increased vascular resistance in hindquarters much more than the renal and mesenteric beds. In contrast, electrical and chemical stimulation of RVLM produced a more prominent effect on the renal vascular bed. 3) Bradycardia was elicited from NA at lower current intensity. 4) Glutamate produced bradycardia only when injected into NA. Studies in rats with sinoaortic deafferentation showed that bradycardic response to activation of NA was only partly reflex in origin. We conclude that 1) NA and RVLM control sympathetic outflow to regional vascular beds differentially and 2) the NA region involves parasympathetic control of heart rate and sympathetic control of arterial pressure.


1990 ◽  
Vol 258 (2) ◽  
pp. H305-H310 ◽  
Author(s):  
D. D. Sheriff ◽  
D. S. O'Leary ◽  
A. M. Scher ◽  
L. B. Rowell

Graded reductions in hindlimb perfusion in dogs exercising at 2 miles/h (0% grade) elicited reflex pressor responses by what is referred to as the “muscle chemoreflex.” To determine the extent to which arterial baroreceptor reflexes oppose the muscle chemoreflex, we elicited pressor responses to muscle ischemia before and after chronic surgical denervation of the arterial baroreceptors. The muscle chemoreflex showed a threshold beyond which systemic pressure rose approximately 3 mmHg for each 1-mmHg decrease in hindlimb perfusion pressure when the arterial baroreceptors were intact. Arterial baroreceptor denervation approximately doubled the pressor responses, i.e., systemic pressure rose by approximately 6 mmHg for each 1-mmHg fall in hindlimb perfusion pressure, without alteration in threshold. We conclude that during mild dynamic exercise, the arterial baroreflexes oppose the pressor response to graded reductions in hindlimb perfusion, reducing it by approximately 50%. When unopposed by the arterial baroreflexes the muscle chemoreflex exhibits a gain (ratio of change in systemic pressure to change in hindlimb perfusion pressure) of approximately -6; thus this reflex can correct by 85% the decrease in muscle perfusion pressure caused by partial vascular occlusion.


1976 ◽  
Vol 41 (5) ◽  
pp. 714-718 ◽  
Author(s):  
E. K. Weir ◽  
I. F. McMurtry ◽  
A. Tucker ◽  
J. T. Reeves ◽  
R. F. Grover

Prostaglandins are naturally occurring substances with powerful vasoactive effects that are released from tissues during hypoxia or ischemia. Several workers have suggested that a prostaglandin may help to mediate the pulmonary vascular pressor response to alveolar hypoxia. To investigate this possibility, we have measured the pressor responses to hypoxia before and after prostaglandin synthesis antagonism with meclofenamate in eight anesthetized dogs, two groups of awake calves (n=10 and =5), and nine isolated, perfused rat lungs. In addition, synthesis was inhibited by the use of indomethacin in nine additional dogs. The stability of the pulmonary vascular response to repeated hypoxic challenges was demonstrated in nine other dogs. In each species and with both prostaglandin antagonists, the pulmonary pressorresponses to hypoxia were significantly increased rather than reduced. We conclude that prostaglandins do not mediate the pulmonary vasoconstriction caused by hypoxia. The consistent increase observed suggests that hypoxic vasoconstriction stimulates prostaglandin synthesis, the net effect of which is pulmonary vasodilatation which opposes the constriction.


1978 ◽  
Vol 44 (1) ◽  
pp. 76-80 ◽  
Author(s):  
R. C. Doekel ◽  
E. K. Weir ◽  
R. Looga ◽  
R. F. Grover ◽  
J. T. Reeves

Pulmonary and systemic hemodynamics and arterial blood gases were measured in anesthetized and mechanically ventilated dogs before and after oral or intravenous administration of ethanol. Increases in mean pulmonary artery pressure and pulmonary vascular resistance occurred. Platelet antiserum-induced thrombocytopenia inhibition of prostaglandin synthesis with meclofenamate, or alpha-adrenergic blockade did not alter the pulmonary pressor response to ethanol. However, the increase in resistance following ethanol was abolished by hyperoxia and potentiated by hypoxia. Thus, it appears that the effect of ethanol is to augment hypoxic pulmonary vasoconstriction, whereas ethanol per se has no independent pulmonary pressor activity.


1993 ◽  
Vol 264 (2) ◽  
pp. R345-R349
Author(s):  
K. Shimizu ◽  
J. Schwartz ◽  
B. P. McGrath

Arginine vasopressin (AVP) enhances reflex buffering of its own pressor response, thus attenuating its vasoconstrictor potential in vivo. To investigate the extent to which this effect of AVP is mediated by V1 or V2 receptors, mean arterial pressure (MAP) and heart rate (HR) changes were examined in response to graded injections of AVP or [Phe2,Orn8]oxytocin, a potent, selective V1-receptor agonist, in the absence and presence of infusion of [Val4,D-Arg8]VP, a selective V2-receptor agonist. Responses were compared in intact and autonomically blocked conscious rats. During autonomic blockade with methscopolamine and hexamethonium, the pressor sensitivities to AVP and [Phe2,Orn8]oxytocin were similarly increased. Infusion of the V2-receptor agonist had no effect by itself on MAP or HR in conscious intact rats. It also did not alter the pressor responses to the V1 agonist, in either intact or autonomically blocked rats. In the presence of the V2 agonist, the decrease in heart rate induced by the V1 agonist was enhanced. These results indicate that reflex buffering of the pressor response to AVP in the conscious rat is mediated by V1 and not V2 receptors. However, V2 receptors may be involved in modulating the heart rate response to AVP.


2005 ◽  
Vol 289 (6) ◽  
pp. H2416-H2423 ◽  
Author(s):  
Jong-Kyung Kim ◽  
Javier A. Sala-Mercado ◽  
Robert L. Hammond ◽  
Jaime Rodriguez ◽  
Tadeusz J. Scislo ◽  
...  

Previous studies have shown that heart failure (HF) or sinoaortic denervation (SAD) alters the strength and mechanisms of the muscle metaboreflex during dynamic exercise. However, it is still unknown to what extent SAD may modify the muscle metaboreflex in HF. Therefore, we quantified the contribution of cardiac output (CO) and peripheral vasoconstriction to metaboreflex-mediated increases in mean arterial blood pressure (MAP) in conscious, chronically instrumented dogs before and after induction of HF in both barointact and SAD conditions during mild and moderate exercise. The muscle metaboreflex was activated via partial reductions in hindlimb blood flow. After SAD, the metaboreflex pressor responses were significantly higher with respect to the barointact condition despite lower CO responses. The pressor response was significantly lower in HF after SAD but still higher than that of HF in the barointact condition. During control experiments in the barointact condition, total vascular conductance summed from all beds except the hindlimbs did not change with muscle metaboreflex activation, whereas in the SAD condition both before and after induction of HF significant vasoconstriction occurred. We conclude that SAD substantially increased the contribution of peripheral vasoconstriction to metaboreflex-induced increases in MAP, whereas in HF SAD did not markedly alter the patterns of the reflex responses, likely reflecting that in HF the ability of the arterial baroreflex to buffer metaboreflex responses is impaired.


2005 ◽  
Vol 288 (3) ◽  
pp. H1374-H1380 ◽  
Author(s):  
Jong-Kyung Kim ◽  
Javier A. Sala-Mercado ◽  
Jaime Rodriguez ◽  
Tadeusz J. Scislo ◽  
Donal S. O'Leary

Previous studies showed that the arterial baroreflex opposes the pressor response mediated by muscle metaboreflex activation during mild dynamic exercise. However, no studies have investigated the mechanisms contributing to metaboreflex-mediated pressor responses during dynamic exercise after arterial baroreceptor denervation. Therefore, we investigated the contribution of cardiac output (CO) and peripheral vasoconstriction in mediating the pressor response to graded reductions in hindlimb perfusion in conscious, chronically instrumented dogs before and after sinoaortic denervation (SAD) during mild and moderate exercise. In control experiments, the metaboreflex pressor responses were mediated via increases in CO. After SAD, the metaboreflex pressor responses were significantly greater and significantly smaller increases in CO occurred. During control experiments, nonischemic vascular conductance (NIVC) did not change with muscle metaboreflex activation, whereas after SAD NIVC significantly decreased with metaboreflex activation; thus SAD shifted the mechanisms of the muscle metaboreflex from mainly increases in CO to combined cardiac and peripheral vasoconstrictor responses. We conclude that the major mechanism by which the arterial baroreflex buffers the muscle metaboreflex is inhibition of metaboreflex-mediated peripheral vasoconstriction.


Sign in / Sign up

Export Citation Format

Share Document