Differential behaviour of 25-hydroxyvitamin D3 24-hydroxylase and 1-hydroxylase in response to protein synthesis inhibitors and cytochrome P-450 inhibitors

1988 ◽  
Vol 66 (5) ◽  
pp. 586-591 ◽  
Author(s):  
M. Kung ◽  
S. W. Kooh ◽  
W. Paek ◽  
D. Fraser

To characterize 25-hydroxyvitamin D3 24-hydroxylase and 25-hydroxyvitamin D3 1-hydroxylase, the activities of the two enzymes were measured in the presence of two types of inhibitors. The effect of protein synthesis inhibitors on 25-hydroxyvitamin D3-stimulated 24-hydroxylase activity in 1-hydroxylating rat kidneys perfused in vitro was tested. Actinomycin D (4 μM) and cytoheximide (10 μM) each abolished 25-hydroxyvitamin D3 24-hydroxylase synthesis when added at the start of perfusion but not when added 4 h later; they did not affect 25-hydroxyvitamin D3 1-hydroxylase activity. The effects of cytochrome P-450 inhibitors on the two enzyme activities were then studied in vivo. Metyrapone and SKF-525A (50 mg/kg body weight) each inhibited 25-hydroxyvitamin D3 24-hydroxylase at 6 and 24 h; in contrast 1-hydroxylase increased and was 5 times the control value at 24 h. Finally, the in vitro effects of six cytochrome P-450 inhibitors at concentrations ranging from 10−7 to 10−3 M on enzyme activities in renal mitochondrial preparations were compared. Both enzymes were inhibited by all of the inhibitors, but inhibition of 25-hydroxyvitamin D3 24-hydroxylase was consistently greater than that of 25-hydroxyvitamin D3 1-hydroxylase. These studies demonstrate that 24-hydroxylation and 1-hydroxylation respond differently to protein synthesis inhibitors and to cytochrome P-450 inhibitors. The findings are consistent with the hypothesis that the two enzyme activities are associated with different cytochrome P-450 moieties.

1987 ◽  
Vol 253 (1) ◽  
pp. E106-E113
Author(s):  
T. O. Carpenter ◽  
D. L. Carnes ◽  
C. S. Anast

Resistance to vitamin D in magnesium depletion has been observed in humans and in animal studies. Variable levels of 1,25-dihydroxyvitamin D [1,25(OH)2D] have been reported in patients with magnesium depletion, and studies of vitamin D metabolism in states of magnesium depletion have not yielded consistent results. We examined effects of magnesium deprivation on circulating 1,25(OH)2D levels before and after a loading dose of 25-hydroxyvitamin D3 [25(OH)D3], on in vivo conversion of small doses of radiolabeled 25(OH)D3 to 1,25(OH)2D3 in intact rats, and on in vitro 25-hydroxyvitamin D-1 alpha-hydroxylase (1 alpha-hydroxylase) activity in rat renal mitochondria. The effects of magnesium-free media on mitochondrial 1 alpha-hydroxylase activity was examined. Magnesium depletion did not affect in vivo conversion of 25(OH)D to 1,25(OH)2D. In vitro 1 alpha-hydroxylase activity was comparable in magnesium-replete and -deplete animals and was evident in the absence of added magnesium in incubation media. Our in vivo and in vitro studies are consistent with one another and demonstrate that in the rat conversion of 25(OH)D to 1,25(OH)2D is unimpaired in magnesium deficiency. Resistance to vitamin D in magnesium depletion is likely due to the impaired skeletal responsivity to 1,25(OH)2D, as demonstrated in earlier studies.


1986 ◽  
Vol 6 (1) ◽  
pp. 54-61
Author(s):  
E J Baker ◽  
L R Keller ◽  
J A Schloss ◽  
J L Rosenbaum

After flagellar detachment in Chlamydomonas reinhardi, there is a rapid synthesis and accumulation of mRNAs for tubulin and other flagellar proteins. Maximum levels of these mRNAs (flagellar RNAs) are reached within 1 h after deflagellation, after which they are rapidly degraded to their predeflagellation levels. The degradation of alpha- and beta-tubulin RNAs was shown to be due to the shortening of their half-lives after accumulation (Baker et al., J. Cell Biol. 99:2074-2081, 1984). Deflagellation in the presence of protein synthesis inhibitors results in the accumulation of tubulin and other flagellar mRNAs by kinetics similar to those of controls. However, unlike controls, in which the accumulated mRNAs are rapidly degraded, these mRNAs are stabilized in cycloheximide. The stabilization by cycloheximide is specific for the flagellar mRNAs accumulated after deflagellation, since there is no change in the levels of flagellar mRNAs in nondeflagellated (uninduced) cells in the presence of cycloheximide. The kinetics of flagellar mRNA synthesis after deflagellation are shown to be the same in cycloheximide-treated and control cells by in vivo labeling and in vitro nuclear runoff experiments. These results show that protein synthesis is not required for the induced synthesis of flagellar mRNAs, and that all necessary transcriptional control factors are present in the cell before deflagellation, but that protein synthesis is required for the accelerated degradation of the accumulated flagellar mRNAs. Since cycloheximide prevents the induced synthesis and accumulation of flagellar proteins, it is possible that the product(s) of protein synthesis required for the accelerated decay of these mRNAs is a flagellar protein(s). The possibility that one or more flagellar proteins autoregulate the stability of the flagellar mRNAs is discussed.


1986 ◽  
Vol 6 (1) ◽  
pp. 54-61 ◽  
Author(s):  
E J Baker ◽  
L R Keller ◽  
J A Schloss ◽  
J L Rosenbaum

After flagellar detachment in Chlamydomonas reinhardi, there is a rapid synthesis and accumulation of mRNAs for tubulin and other flagellar proteins. Maximum levels of these mRNAs (flagellar RNAs) are reached within 1 h after deflagellation, after which they are rapidly degraded to their predeflagellation levels. The degradation of alpha- and beta-tubulin RNAs was shown to be due to the shortening of their half-lives after accumulation (Baker et al., J. Cell Biol. 99:2074-2081, 1984). Deflagellation in the presence of protein synthesis inhibitors results in the accumulation of tubulin and other flagellar mRNAs by kinetics similar to those of controls. However, unlike controls, in which the accumulated mRNAs are rapidly degraded, these mRNAs are stabilized in cycloheximide. The stabilization by cycloheximide is specific for the flagellar mRNAs accumulated after deflagellation, since there is no change in the levels of flagellar mRNAs in nondeflagellated (uninduced) cells in the presence of cycloheximide. The kinetics of flagellar mRNA synthesis after deflagellation are shown to be the same in cycloheximide-treated and control cells by in vivo labeling and in vitro nuclear runoff experiments. These results show that protein synthesis is not required for the induced synthesis of flagellar mRNAs, and that all necessary transcriptional control factors are present in the cell before deflagellation, but that protein synthesis is required for the accelerated degradation of the accumulated flagellar mRNAs. Since cycloheximide prevents the induced synthesis and accumulation of flagellar proteins, it is possible that the product(s) of protein synthesis required for the accelerated decay of these mRNAs is a flagellar protein(s). The possibility that one or more flagellar proteins autoregulate the stability of the flagellar mRNAs is discussed.


1992 ◽  
Vol 262 (4) ◽  
pp. E483-E487 ◽  
Author(s):  
T. O. Carpenter ◽  
M. D. McPhee ◽  
R. Bort ◽  
M. A. Mitnick ◽  
D. L. Carnes

Certain parathyroid hormone (PTH) analogues have been shown to selectively impair some but not all physiological actions of PTH. In this study, transaminated rat (r) PTH [TA-rPTH-(1-34)], a PTH analogue that differs from the rPTH-(1-34) fragment in that the NH2-terminal alanine is converted to pyruvate, was infused into mice to determine its properties in vivo and specifically to determine whether stimulation of 25-hydroxyvitamin D-1 alpha-hydroxylase (1 alpha-hydroxylase) activity was more dependent on concomitant renal handling of phosphate or on generation of adenosine 3',5'-cyclic monophosphate (cAMP). High-performance liquid chromatography-purified TA-rPTH-(1-34) was infused into C57BL mice at 10 or 30 pmol/h for 24 h. At 30 pmol/h, TA-rPTH-(1-34) was comparable with rPTH-(1-34) in its hypophosphatemic and phosphaturic effects but was less potent than rPTH-(1-34) in raising serum calcium. TA-rPTH-(1-34) was markedly less effective in stimulating renal 1 alpha-hydroxylase than rPTH-(1-34). Stimulation of urinary cAMP excretion occurred after infusion with TA-rPTH-(1-34), but this effect was significantly less than that seen with rPTH-(1-34). These findings indicate that PTH-induced hypophosphatemia and phosphaturia can be uncoupled from PTH stimulation of 1 alpha-hydroxylase. Furthermore, cAMP-related signal transduction appears to be more significant in regulation of 1 alpha-hydroxylase than mechanisms that mediate PTH-sensitive phosphate transport, independent of cAMP.


1990 ◽  
Vol 258 (5) ◽  
pp. E780-E789 ◽  
Author(s):  
R. Vieth ◽  
K. McCarten ◽  
K. H. Norwich

To understand the relationships among 1) the dose of 25-hydroxyvitamin D [25(OH)D] in vivo, 2) the activity of 1-hydroxylase in renal mitochondria, and 3) the production of 1,25-dihydroxyvitamin D [1,25(OH)2D] in vivo, we gave rats different chronic or acute doses of 25-hydroxyvitamin D3 [25(OH)D3]. We followed the metabolism of intracardially administered [25-hydroxy-26,27-methyl-3H]cholecalciferol [25(OH)[3H]D3] for 24 h before killing by measuring extracts of serum by chromatography. Specific activity of 1-hydroxylase in kidney was measured at death. In rats given 0-2,000 pmol 25(OH)D3 chronically by mouth, there was a dose-dependent decline in the percent of serum radioactivity made up of 1,25-dihydroxy-[26,27-methyl-3H]cholecalciferol [1,25(OH)2[3H]D3] as well as a decline in mitochondrial 1-hydroxylase, and these correlated significantly (r = 0.83, P less than 0.001). Serum %1,25(OH)2[3H]D3 in this experiment ranged from 0.8 to 42%. A small part of this range could be accounted for by a faster metabolic clearance rate (MCR) of 1,25(OH)2D3 from rats supplemented with 25(OH)D3 (MCR, 2.12 +/- 0.10 ml/min) compared with rats restricted in vitamin D (MCR, 0.94 +/- 0.06 ml/min, P less than 0.001). The activity of 1-hydroxylase was by far the major factor determining serum %1,25(OH)2[3H]D3. When different acute doses of 25(OH)D3 were given to rats with identical specific activities of 1-hydroxylase, the resulting 1,25(OH)2D3 concentrations in serum correlated with the 25(OH)D3 dose (r = 0.99, P less than 0.001). We conclude that the behavior of 1-hydroxylase in vivo is analogous to the classic behavior in vitro of an enzyme functioning below its Michaelis constant (Km). The amount of 1-hydroxylase present in renal mitochondria determines the fraction (not simply the quantity) of 25(OH)D metabolized to 1,25(OH)2D3 in vivo.


2002 ◽  
Vol 15 (1) ◽  
pp. 95-110 ◽  
Author(s):  
Roland Nau ◽  
Helmut Eiffert

SUMMARY Several bacterial components (endotoxin, teichoic and lipoteichoic acids, peptidoglycan, DNA, and others) can induce or enhance inflammation and may be directly toxic for eukaryotic cells. Bactericidal antibiotics which inhibit bacterial protein synthesis release smaller quantities of proinflammatory/toxic bacterial compounds than Β-lactams and other cell wall-active drugs. Among the Β-lactams, compounds binding to penicillin-binding protein 2 (PBP-2) release smaller amounts of bacterial substances than antibacterials inhibiting PBP-3. Generally, high antibiotic concentrations (more than 10 times the MIC) induce the release of fewer bacterial proinflammatory/toxic compounds than concentrations close to the MIC. In several in vitro and in vivo systems, bacteria treated with protein synthesis inhibitors or Β-lactams inhibiting PBP-2 induce less inflammation than bacteria treated with PBP-3-active Β-lactams. In mouse models of Escherichia coli peritonitis sepsis and of Streptococcus pneumoniae meningitis, lower release of proinflammatory bacterial compounds was associated with reduced mortality. In conclusion, sufficient evidence for the validity of the concept of modulating the release of proinflammatory bacterial compounds by antibacterials has been accumulated in vitro and in animal experiments to justify clinical trials in sepsis and meningitis. A properly conducted study addressing the potential benefit of bacterial protein synthesis inhibitors versus Β-lactam antibiotics will require both strict selection and inclusion of a large number of patients. The benefit of this approach should be greatest in patients with a high bacterial load.


2015 ◽  
Vol 93 (6) ◽  
pp. 2894-2903 ◽  
Author(s):  
A. Morris ◽  
R. Shanmugasundaram ◽  
J. McDonald ◽  
R. K. Selvaraj

2004 ◽  
Vol 48 (9) ◽  
pp. 3272-3278 ◽  
Author(s):  
Hugo Vanden Bossche ◽  
Jannie Ausma ◽  
Hilde Bohets ◽  
Karen Vermuyten ◽  
Gustaaf Willemsens ◽  
...  

ABSTRACT R126638 is a novel triazole with in vitro activity similar to that of itraconazole against dermatophytes, Candida spp., and Malassezia spp. In animal models of dermatophyte infections, R126638 showed superior antifungal activity. R126638 inhibits ergosterol synthesis in Candida albicans, Trichophyton mentagrophytes, Trichophyton rubrum, and Microsporum canis at nanomolar concentrations, with 50% inhibitory concentrations (IC50s) similar to those of itraconazole. The decreased synthesis of ergosterol and the concomitant accumulation of 14α-methylsterols provide indirect evidence that R126638 inhibits the activity of CYP51 that catalyzes the oxidative removal of the 14α-methyl group of lanosterol or eburicol. The IC50s for cholesterol synthesis from acetate in human hepatoma cells were 1.4 μM for itraconazole and 3.1 μM for R126638. Compared to itraconazole (IC50 = 3.5 μM), R126638 is a poor inhibitor of the 1α-hydroxylation of 25-hydroxyvitamin D3 (IC50 > 10 μM). Micromolar concentrations of R126638 and itraconazole inhibited the 24-hydroxylation of 25-hydroxyvitamin D3 and the conversion of 1,25-dihydroxyvitamin D3 into polar metabolites. At concentrations up to 10 μM, R126638 had almost no effect on cholesterol side chain cleavage (CYP11A1), 11β-hydroxylase (CYP11B1), 17-hydroxylase and 17,20-lyase (CYP17), aromatase (CYP19), or 4-hydroxylation of all-trans retinoic acid (CYP26). At 10 μM, R126638 did not show clear inhibition of CYP1A2, CYP2A6, CYP2D6, CYP2C8, CYP2C9, CYP2C10, CYP2C19, or CYP2E1. Compared to itraconazole, R126638 had a lower interaction potential with testosterone 6β hydroxylation and cyclosporine hydroxylation, both of which are catalyzed by CYP3A4, whereas both antifungals inhibited the CYP3A4-catalyzed hydroxylation of midazolam similarly. The results suggest that R126638 has promising properties and merits further in vivo investigations for the treatment of dermatophyte and yeast infections.


1987 ◽  
Vol 116 (4) ◽  
pp. 459-464 ◽  
Author(s):  
Kid Törnquist

Abstract. The effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on PRL secretion from rat pituitary in vivo and in vitro was investigated. Treating the rats for three days with 0.05 μg/kg per day had no effect on basal PRL secretion, whereas the TRH-induced PRL secretion was increased (P < 0.001). The enhancing effect of 1,25(OH)2D3 was blunted by verapamil. Incubating dispersed anterior pituitary cells with 10−8 mol/l 1,25(OH)2D3 induced a significant increase in PRL secretion after 96 h (364 ± 30 ng/well vs 481 ± 33 ng/well, P < 0.001; mean ± sem) compared with control cells. The TRH-induced PRL secretion was increased in cells incubated with 1,25(OH)2D3 for 144 h (0.766 ± 0.061 vs 1.024 ± 0.076 μg/well, P < 0.05; mean ± sem) compared with control cells. Neither 25-hydroxyvitamin D3 (25OH-D3) nor 24,25-dihydroxyvitamin D3 had any effects on the PRL secretion. However, when the cells were incubated with both 10−8 mol/l 1,25(OH)2D3 and 10−6 mol/l 25OHD3, the enhancing effect of 1,25(OH)2D3 on the basal PRL secretion was blunted. The results suggest that 1,25(OH)2D3 possibly affects the regulation of PRL release from the rat pituitary and that this effect is specific for 1,25(OH)2D3.


Sign in / Sign up

Export Citation Format

Share Document