The effects of constant and fluctuating incubation temperatures on sex determination, growth, and performance in the tortoise Gopherus polyphemus

2001 ◽  
Vol 79 (9) ◽  
pp. 1609-1620 ◽  
Author(s):  
Jeffery P Demuth

Temperature-dependent sex determination is one of the best documented yet evolutionarily enigmatic sex-determining systems. The classical theoretical framework suggests that temperature-dependent sex determination will be adaptive when males and females benefit differentially from development at certain temperatures. Empirical evidence has not provided convincing support for this "differential-fitness" hypothesis. Furthermore, since most experiments utilize constant temperature incubation treatments to explore phenotypic response to temperature, few studies have addressed the consequences of incubation under natural conditions. In this study I utilized constant-temperature laboratory incubations and natural-nest incubations to determine the effects of temperature on sex, size, growth, and locomotor performance in the tortoise Gopherus polyphemus. Constant-temperature incubations do induce substantial growth and performance variation in these tortoises. However, the data do not clearly support the differential-fitness hypothesis because (i) growth variation does not result in adult size dimorphism, (ii) performance differences are confined to a very short period after hatching, and (iii) natural incubation temperatures do not vary sufficiently to produce significant phenotypic variation in traits other than sex.

1991 ◽  
Vol 18 (2) ◽  
pp. 225 ◽  
Author(s):  
M Palmer-Allen ◽  
F Beynon ◽  
a Georges

Eastern long-necked turtles, Chelodina longicollis, are known to lack heteromorphic sex chromosomes and to lack temperature-dependent sex determination when incubated under constant conditions. This study determined whether sex ratios of hatchlings emerging from natural nests of C. longicollis were different from that expected from constant temperature experiments. Temperatures in the eight nests monitored varied considerably each day (by 1.7-12.6�C), with eggs at the top of the nest experiencing the greatest variation (mean range 9.0�C) and eggs at the bottom experiencing least variation (mean range 5.3�C). Temperatures experienced by the top and bottom eggs differed by as much as 5.7�C at any one time. No monotonic seasonal trend was evident, but rainfall caused a sharp drop in nest temperatures. Sex ratios in hatchlings from 14 field nests of C. longicollis did not differ significantly from 1:1, a result in agreement with previous studies conducted at constant incubation temperatures in the laboratory.


2021 ◽  
Vol 288 (1943) ◽  
pp. 20202819
Author(s):  
Sarah L. Whiteley ◽  
Arthur Georges ◽  
Vera Weisbecker ◽  
Lisa E. Schwanz ◽  
Clare E. Holleley

Sex determination and differentiation in reptiles is complex. Temperature-dependent sex determination (TSD), genetic sex determination (GSD) and the interaction of both environmental and genetic cues (sex reversal) can drive the development of sexual phenotypes. The jacky dragon ( Amphibolurus muricatus ) is an attractive model species for the study of gene–environment interactions because it displays a form of Type II TSD, where female-biased sex ratios are observed at extreme incubation temperatures and approximately 50 : 50 sex ratios occur at intermediate temperatures. This response to temperature has been proposed to occur due to underlying sex determining loci, the influence of which is overridden at extreme temperatures. Thus, sex reversal at extreme temperatures is predicted to produce the female-biased sex ratios observed in A. muricatus . The occurrence of ovotestes during development is a cellular marker of temperature sex reversal in a closely related species Pogona vitticeps . Here, we present the first developmental data for A. muricatus , and show that ovotestes occur at frequencies consistent with a mode of sex determination that is intermediate between GSD and TSD. This is the first evidence suggestive of underlying unidentified sex determining loci in a species that has long been used as a model for TSD.


1977 ◽  
Author(s):  
K. Breddin ◽  
H.J. Krzywanek

ADP-, collagen and epinephrine-induced aggregation change markedly if citrate blood or PRP are kept at different incubation temperatures or/and if the time interval between blood sampling and testing varies. With a growing time interval the response of PRP to ADP, collagen or epinephrine increases. Desaggregation after ADP-aggregation decreases with time. If PRP is incubated at 4°C or 10°C aggregation is increased in comparison with room temperature. At 37°C aggregation is markedly inhibited. This inhibitory effect is almost fully reversible several hours after blood sampling. Corresponding results were obtained with PAT III, measuring spontaneous aggregation tendency. Morphologic platelet changes show some correlation with the time and temperature dependent changes of the aggregation pattern. In clinical studies the time interval between blood sampling and testing and the incubation temperature of PRP should be strictly controlled. If enhanced platelet aggregation is to be studied the time interval between venepuncture and performance of the test should be 30 - 60 min for ADP-or collagen-induced aggregation and between 90 and 360 min for PAT III. PRP should always be kept at 20 - 25°C.


2007 ◽  
Vol 4 (2) ◽  
pp. 176-178 ◽  
Author(s):  
Rajkumar S Radder ◽  
Alexander E Quinn ◽  
Arthur Georges ◽  
Stephen D Sarre ◽  
Richard Shine

An individual's sex depends upon its genes (genotypic sex determination or GSD) in birds and mammals, but reptiles are more complex: some species have GSD whereas in others, nest temperatures determine offspring sex (temperature-dependent sex determination). Previous studies suggested that montane scincid lizards ( Bassiana duperreyi , Scincidae) possess both of these systems simultaneously: offspring sex is determined by heteromorphic sex chromosomes (XX–XY system) in most natural nests, but sex ratio shifts suggest that temperatures override chromosomal sex in cool nests to generate phenotypically male offspring even from XX eggs. We now provide direct evidence that incubation temperatures can sex-reverse genotypically female offspring, using a DNA sex marker. Application of exogenous hormone to eggs also can sex-reverse offspring (oestradiol application produces XY as well as XX females). In conjunction with recent work on a distantly related lizard taxon, our study challenges the notion of a fundamental dichotomy between genetic and thermally determined sex determination, and hence the validity of current classification schemes for sex-determining systems in reptiles.


2021 ◽  
pp. jeb.237016
Author(s):  
Jessica Alice Leivesley ◽  
Njal Rollinson

The Charnov-Bull model of differential fitness is often used to explain the evolution and maintenance of temperature-dependent sex determination (TSD). Most tests of the model focus on morphological proxies of fitness, such as size traits, whereas early life physiological traits that are closely related to lifetime fitness might provide a framework for generalising the Charnov-Bull model across taxa. One such trait is the strength of early life immune response, which is strongly linked to early life survival and fitness. Here, we manipulate temperature, variance in temperature, and sex to test the Charnov-Bull model using a physiological trait, immune system strength, in the snapping turtle (Chelydra serpentina L. 1758). We find no evidence of sex-specific differences in bactericidal capacity of hatchling blood, and no evidence that mean temperature influences bactericidal capacity. However, we find that fluctuating incubation temperature (i.e., a more naturalized incubation regime) is associated with a greater bactericidal capacity compared to constant temperature incubation. We also find that egg mass, a proxy for maternal provisioning, is positively associated with bactericidal capacity. Our findings suggest that the evolution of temperature-dependent sex determination in reptiles is unrelated to our measure early-life innate immunity. Our study also underlines how immune response is condition-dependent in early life, and questions the biological relevance of constant temperature incubation in experimental studies on ectotherm development.


1994 ◽  
Vol 143 (2) ◽  
pp. 279-289 ◽  
Author(s):  
D Crews ◽  
J M Bergeron

Abstract In many turtles the temperature during the middle of incubation determines the gonadal sex of the hatchling. In the red-eared slider turtle (Trachemys scripta), an incubation temperature of 26 °C results in all male offspring, whereas an incubation temperature of 31 °C results in all female offspring; at temperatures intermediate to these (e.g. 29, 29·2, 29·4 °C) a mixed sex ratio is obtained. Administration of exogenous oestrogens will overcome the effects of an all-male producing incubation temperature to cause female sex determination, whereas administration of exogenous dihydrotestosterone (DHT) or testosterone to eggs incubating at an all-female temperature will have no discernible effect. Administration of DHT will cause male sex determination only if administered at intermediate incubation temperatures whereas administration of testosterone to eggs incubating at all male-producing and male-biased intermediate temperatures results in a significant number of female offspring, an effect presumably due to aromatization of testosterone to oestradiol (OE2), Since testosterone serves as the precursor to both DHT and OE2, being metabolized by reductase and aromatase respectively, three experiments were conducted to determine whether various putative reductase and aromatase inhibitors would overcome the effect of incubation temperature. First, while administration of testosterone to eggs incubating at all male-producing and male-biased intermediate temperatures produced females in a dose- and temperature-dependent manner, significant numbers of intersex individuals resulted from high dosage testosterone treatment to eggs incubating at a female-biased intermediate temperature. The reductase inhibitors 4MA and MK906 were capable of producing female offspring if administered at intermediate temperatures, but not in a dose-dependent fashion. Administration of the aromatase inhibitors CGS16949A and CGS20267 resulted in male offspring at both female-biased intermediate and at all female-producing temperatures in a dose-dependent fashion. Second, similar findings were obtained with combined doses of testosterone and reductase or aromatase inhibitors. Combined treatment of eggs at male-biased intermediate incubation temperatures with testosterone and reductase inhibitor resulted in female hatchlings, whereas combined treatment of testosterone and aromatase inhibitor at both female-biased intermediate and at all female-producing temperatures resulted in male hatchlings. Finally, treatment with reductase inhibitor and aromatase inhibitor combined resulted in only male offspring at all incubation temperatures with the exception of the all-female incubation temperature; in the latter instance almost all offspring were female. These studies indicate that in the red-eared slider turtle (i) male and female sex determination are independent cascades residing equally in each individual and regulated by incubation temperature, (ii) steroid hormones are involved in temperature-dependent sex determination, and (iii) testosterone plays a pivotal role in this process. The data also suggest that aromatase and oestrogen receptors may be involved in the initiation of an ovary determining cascade and that reductase and androgen receptors may be involved in the initiation of a testis determining cascade. Journal of Endocrinology (1994) 143, 279–289


1991 ◽  
Vol 69 (10) ◽  
pp. 2693-2696 ◽  
Author(s):  
Thane Wibbels ◽  
Flavius C. Killebrew ◽  
David Crews

Sex determination was investigated in Cagle's map turtle, Graptemys caglei, which has a restricted distribution which is the southernmost of all Graptemys species. This species exhibits temperature-dependent sex determination, with high incubation temperatures producing only females and low temperatures producing only males. The estimated pivotal temperature (approximately 30.0 °C) is higher than those reported for other species of Graptemys in North America; however, the interspecific variations in pivotal temperature are small (approximately 0.5–1.0 °C). Temperature appears to affect the ovarian or testicular nature of the gonads in an "all or none" fashion, but exerts a graded effect on the length of ovaries. In addition, temperature appears to exert a graded effect on the regression of the oviducts in males. The occurrence of temperature-dependent sex determination in this species is also of conservational importance, since alterations to a single river system could potentially impact the reproductive success of this species by changing nest temperatures and, thus, population sex ratio(s).


2018 ◽  
Author(s):  
Snigdha Mohan ◽  
Ton G.G. Groothuis ◽  
Chris Vinke ◽  
Jean-Christophe Billeter

AbstractMothers may modulate the phenotype of their offspring by affecting their development based on her own environment. In changing environments, these maternal effects are thought to adjust offspring physiology and development and thus produce offspring better prepared to the environment experienced by the mother. However, evidence for this is scarce. Here we test the consequences of a match or mismatch between mother and offspring temperature conditions on growth, adult morphology and reproduction into the grandchildren generation in the fruit fly Drosophila melanogaster. This experimental design tests the relative contribution of maternal effects and offspring intrinsic plasticity to the phenotypic response to temperature conditions. We manipulated maternal temperature conditions by exposing mothers to either 18°C or 29°C conditions. Their eggs developed at a temperature that was either matched or mismatched with the maternal one. Survival from egg to adult was higher when the maternal and offspring environments matched, showing maternal effects affecting a trait that is a close proxy for fitness. However developmental speed, adult size and fecundity responded to temperature mostly through offspring phenotypic plasticity and maternal effects only had a small contribution. The results provide experimental evidence for maternal effects in influencing a potentially adaptive offspring response to temperature in the model organism Drosophila melanogaster. These effects appear to modulate early embryonic phenotypes such as survival, more than the adult phenotypes of the offspring.


1996 ◽  
Vol 149 (3) ◽  
pp. 457-463 ◽  
Author(s):  
D Crews ◽  
A R Cantú ◽  
J M Bergeron

Abstract This study addressed the hypothesis that, in the red-eared slider turtle, Trachemys scripta, non-aromatizable androgens are the physiological equivalent of temperature in determining male development. In the first experiment, eggs were treated in the middle of the temperature-sensitive period with 1·0 or 10·0 μg androsterone, 5α-dihydrotestosterone, 3α-androstanediol, or 3β-androstanediol, while at an all-male, male-biased, or one of two female-biased incubation temperatures. In the second experiment, eggs were treated with the same dosages of dihydrotestosterone at different stages of embryonic development while at a male-biased, threshold, or a female-biased incubation temperature. Results of experiment one indicated that hormone-induced masculinization is specific to non-aromatizable androgens. Results of experiment two indicated that the sensitivity to dihydrotestosterone corresponds to the temperature-sensitive window during development. Further, there is a dose–response relationship but no apparent synergism between exogenous dihydrotestosterone and incubation temperature. When considered with other research, it is suggested that non-aromatizable androgens and their products are involved in the initiation of male sex determination whereas oestrogens and their aromatizable androgen precursors are involved in the initiation of female sex determination. Journal of Endocrinology (1996) 149, 457–463


Sign in / Sign up

Export Citation Format

Share Document