Effect of nonessential amino acids on phagostimulation and maintenance of the pea aphid, Acyrthosiphon pisum

1983 ◽  
Vol 61 (10) ◽  
pp. 2224-2229 ◽  
Author(s):  
P. N. Srivastava ◽  
J. L. Auclair ◽  
U. Srivastava

Eleven nonessential amino acids and amides, at concentrations ranging from 0.001 to 1.0% in 35% sucrose solutions, were individually tested for their role in phagostimulation, growth, and survival in Acyrthosiphon pisum (Harris). Alanine and -γ-amino butyric acid were generally phagostimulatory, whereas asparagine, aspartic acid, cysteine, cystine, glutamic acid, glycine, proline, serine, and tyrosine were generally inhibitory. Asparagine, glutamic acid, glycine, and proline supported growth and prolonged survival; aspartic acid and tyrosine increased weight but did not prolong survival, and alanine, -γ-amino butyric acid, cystine, cysteine, and serine neither promoted growth nor prolonged survival.

1975 ◽  
Vol 21 (3) ◽  
pp. 414-417 ◽  
Author(s):  
Yasuyuki Doi ◽  
Akikatsu Kataura

Abstract Free amino acids in the tonsils of 20 individuals were measured column chromatographically. Those always found in readily detectable amounts included O-phosphoserine, taurine, O-phosphoethanolamine, aspartic acid, hydroxyproline, threonine, serine, glutamic acid, proline, glycine, alanine, α-amino-n-butyric acid, valine, cystine, methionine, isoleucine, leucine, tyrosine, phenylalanine, ornithine, γ-amino-butyric acid, lysine, histidine, and arginine. Results were compared for three clinical pathological groups and for four age groups. Some abnormal values may result from the pathological conditions.


1984 ◽  
Vol 102 (3) ◽  
pp. 667-672 ◽  
Author(s):  
G. Ashbell ◽  
H. H. Theune ◽  
D. Sklan

SummaryChanges in distribution of amino acid nitrogen of chopped wheat plants ensiled at shooting and flowering when wilted, and at the milk and dough stages as fresh material, were determined as affected by addition of 0·8% propionic acid (PrA) or 2·2% urea phosphate-calcium propionate (UP-CaPr). Analyses were carried out after an ensiling period of 90 days and after a further aerobic exposure period (AE) of 7 days.Total amino acid (TAA) contents in the dry matter (D.M.) during the fermentation period and in the AE were stable in untreated material (UM) and treated material. Concentration of essential amino acids decreased during fermentation, this decrease being higher in the UM. The free amino acids were low in the fresh material (18·6% of TAA) but increased in the ensiled material to ca. 71 % of the TAA in the silage. In the AE this level was 63% in UM and 69% in treated material. The ammonia-N contents increased during fermentation in UM and especially in the UP-CaPr treatments, while the opposite occurred in the PrA treatments.The concentrations of and changes in 21 amino acids (AAs) are given. The highest AA concentrations recorded in the fresh material were those of arginine, lysine, glutamic acid, alanine, leucine, proline and glycine. The most marked increments in AAs as a result of fermentation were those of ornithine, γ-amino butyric acid, threonine and methionine. Marked decreases were observed in glutamine, arginine and glutamic acid. PrA increased mainly arginine, asparagine and glutamine, whereas γ-amino butyric acid decreased; UP-CaPr increased arginine, asparagine, lysine and glutamic acid (in silage only) and reduced γ-amino butyric acid and glutamine (in AE only).


1969 ◽  
Vol 47 (7) ◽  
pp. 1061-1065 ◽  
Author(s):  
Dilbagh Singh ◽  
Eugene B. Smalley

Thirty-two ninhydrin-positive nitrogenous compounds were present in the xylem sap of 6- to 9-year- old American elms. Twenty-six of these compounds were identified. Total concentration of nitrogenous materials was several times higher in diseased than in healthy sap after inoculation during the susceptible period in the spring, but was lower after inoculations during the late resistant period. Percentage compositions of γ-amino-n-butyric acid, proline, and alanine in diseased sap increased after both spring and mid-summer inoculations. Proline, which was present in trace amounts in healthy sap, constituted 14 to 38% of the total in diseased sap. Percentage concentrations of amide nitrogen in diseased sap were reduced 50% or more in all inoculated trees. Percentages of ammonia, aspartic acid, glutamic acid, and several other amino acids did not change.


1966 ◽  
Vol 101 (3) ◽  
pp. 591-597 ◽  
Author(s):  
R M O'Neal ◽  
R E Koeppe ◽  
E I Williams

1. Free glutamic acid, aspartic acid, glutamic acid from glutamine and, in some instances, the glutamic acid from glutathione and the aspartic acid from N-acetyl-aspartic acid were isolated from the brains of sheep and assayed for radioactivity after intravenous injection of [2-(14)C]glucose, [1-(14)C]acetate, [1-(14)C]butyrate or [2-(14)C]propionate. These brain components were also isolated and analysed from rats that had been given [2-(14)C]propionate. The results indicate that, as in rat brain, glucose is by far the best precursor of the free amino acids of sheep brain. 2. Degradation of the glutamate of brain yielded labelling patterns consistent with the proposal that the major route of pyruvate metabolism in brain is via acetyl-CoA, and that the short-chain fatty acids enter the brain without prior metabolism by other tissue and are metabolized in brain via the tricarboxylic acid cycle. 3. When labelled glucose was used as a precursor, glutamate always had a higher specific activity than glutamine; when labelled fatty acids were used, the reverse was true. These findings add support and complexity to the concept of the metabolic; compartmentation' of the free amino acids of brain. 4. The results from experiments with labelled propionate strongly suggest that brain metabolizes propionate via succinate and that this metabolic route may be a limited but important source of dicarboxylic acids in the brain.


2013 ◽  
Vol 14 (1) ◽  
pp. 105
Author(s):  
T. Georgieva ◽  
P. Zorovski

The purpose of this survey is to study the content of non-essential amino acids in four winter (Dunav 1, Ruse 8, Resor 1, Line M-K) and five spring (Obraztsov chiflik 4, Mina, HiFi, Novosadski golozarnest and Prista 2) cultivars of oats grown in Central Southern Bulgaria within the period from 2007 to 2009. The tested cultivars have different contents of non-essential amino acids. Dunav 1 has the highest quantity of glicine (5.12 g/100 g protein) of all the winter cultivars, Ruse 8 has the highest quantity of alanine (5.69 g/100 g protein) and Resor 1 – the highest quantity of arginine (6.14 g/100 g protein). Generally speaking, the spring cultivars have a larger quantity of glutamic acid (from 25.86 to 26.07 g/100 g protein) and proline (from 6.15 to 8.21 g/100 g protein) but a smaller quantity of glycine (from 4.68 to 4.99 g/100 g protein) compared to the winter cultivars. The naked cultivar Mina has the highest quantity of cystine (2.14 g/100 g protein), cultivar Prista 2 has the highest quantity of proline (8.21 g/100 g protein) and glutamic acid (26.07 g/100g protein) and HiFi ranks first in terms of aspartic acid (9.05 g/100 g protein), serine (5.02 g/100 g protein) and tyrosine (2.09 g/100 g protein). In the study we have also established certain relations between non-essential amino acids.


1960 ◽  
Vol 38 (11) ◽  
pp. 1229-1234 ◽  
Author(s):  
R. Kasting ◽  
A. J. McGinnis

The production of C14O2 by third-instar larvae of the blow fly, Phormia regina Meig., after it was injected with glutamic acid-U-C14, indicates that this substrate was metabolized under these conditions. However, the nutritionally essential amino acids lysine, phenylalanine, valine, isoleucine, leucine, and threonine, isolated from the injected larvae, contained little radioactivity. A low level of radioactivity in arginine, histidine, and methionine suggests that they were slowly synthesized. The nutritionally non-essential amino acids alanine, serine, aspartic acid, and proline contained large quantities of radioactivity; tyrosine and glycine were exceptions. These results, in agreement with earlier work that used glucose-U-C14, show that radioactivity data are useful for determining certain of the nutritionally essential amino acids.


1967 ◽  
Vol 105 (1) ◽  
pp. 299-310 ◽  
Author(s):  
H. J. Somerville ◽  
J. L. Peel

Peptostreptococcus elsdenii, a strict anaerobe from the rumen, was grown on a medium containing yeast extract and [1−14C]- or [2−14C]-lactate. Radioisotope from lactate was found in all cell fractions, but mainly in the protein. The label in the protein fraction was largely confined to a few amino acids: alanine, serine, aspartic acid, glutamic acid and diaminopimelic acid. The alanine, serine, aspartic acid and glutamic acid were separated, purified and degraded to establish the distribution of 14C from lactate within the amino acid molecules. The labelling patterns in alanine and serine suggested their formation from lactate without cleavage of the carbon chain. The pattern in aspartic acid suggested formation by condensation of a C3 unit derived directly from lactate with a C1 unit, probably carbon dioxide. The distribution in glutamic acid was consistent with two possible pathways of formation: (a) by the reactions of the tricarboxylic acid cycle leading from oxaloacetate to 2-oxoglutarate, followed by transamination; (b) by a pathway involving the reaction sequence 2 acetyl-CoA→crotonyl-CoA→glutaconate→glutamate.


Analyses of the alimentary contents flowing to the duodenum of sheep during 24 h show that when the sheep are consuming a low-nitrogen diet more total nitrogen and amino nitrogen pass to the duodenum than are eaten daily in the food whereas when the sheep are eating high nitrogen diets, less total nitrogen and less amino nitrogen pass to the duodenum. The disparity between the total nitrogen and amino nitrogen content of the diets largely disappeared by the time the alimentary contents reached the terminal part of the ileum. From 64 to 68% of the nitrogen entering the duodenum and 54 to 64% of the nitrogen in the ileal contents was in the form of amino nitrogen. Proportionately more of the amino nitrogen was in solution in the ileal contents than in the duodenal contents. Losses of amino acids in the stomach when a high-nitrogen diet was consumed were especially large for glutamic acid, aspartic acid, proline, arginine and leucine. They were least for cystine and threonine. Gains of amino acids in the stomach when low nitrogen diets were consumed were all substantial except for proline, where a loss was found when hay and flaked maize were given. When these changes are considered as proportions of the quantities eaten then trends are similar for all acids. Changes in the molar proportions of the amino acids present in hydrolysates of the duodenal and ileal contents are discussed together with the significance of these changes in relation to the nutrition of the sheep.


Sign in / Sign up

Export Citation Format

Share Document