Thermoregulation and energetics of fin and sei whales based on postmortem, stratified temperature measurements

1985 ◽  
Vol 63 (10) ◽  
pp. 2267-2269 ◽  
Author(s):  
Paul Brodie ◽  
Arvid Paasche

It has been postulated that large whales have uniform body temperatures and may experience heat stress in warm waters or when active in colder water. Postmortem (approximately 15 min), stratified body-core temperature measurements of fin and sei whales (Balaenoptera physalus, B. borealis), taken from the commercial catch allocated to the Icelandic fleet, revealed low, mid-core temperatures, which further decreased towards the blubber. This arrangement is considered in terms of reduced thermal maintenance costs and therefore food requirements. The temperature elevation that had been anticipated following intensive pursuit was not evident, a phenomenon that might be explained by propulsive efficiency (a function of internal mechanical design or external hydrodynamic characteristics) and (or) a high thermoregulatory capacity.

2008 ◽  
Vol 53 (12) ◽  
pp. 3391-3404 ◽  
Author(s):  
Akimasa Hirata ◽  
Hironori Sugiyama ◽  
Masami Kojima ◽  
Hiroki Kawai ◽  
Yoko Yamashiro ◽  
...  

Author(s):  
M Marc Abreu ◽  
Ricardo L Smith ◽  
Trevor M Banack ◽  
Alexander C Arroyo ◽  
Robert F Gochman ◽  
...  

For centuries, temperature measurement deficiencies attributable to biological barriers and low thermo-conductivity (k) have precluded accurate surface-based fever assessment. At this stage of the pandemic, infection detection in children (who due to immature immune system may not effectively respond to vaccines) is critical because children can be readily infected and also become a large mutation reservoir. We reveal hitherto-unrecognized worldwide body temperature measurements (T°), in children and adults, over tissue typified by low-k similar to wood that may reach 6.8°C in thermal variability, hampering thereby COVID-19 control. Brain-eyelid thermal tunnels’ (BTT) integration of low-k and high-k regions creating a thermal pathway for undisturbed heat transmission from hypothalamus to high-k skin eliminates current shortcomings and makes the brain indispensable for defeating COVID-19 given that brain thermoregulatory signals are not limited by mutations. Anatomo-histologic, emissive, physiologic, and thermometric bench-to-bedside studies characterized and overcome biophysical limitations of thermometry through high-k eyelid-enabled brain temperature measurements in children and adults. BTT eyelid features fat-free skin (~900 µm) and unique light emission through a blood/fat configuration in the underlying tunnel. Contrarily, forehead features variable and thick dermis (2000–2500 µm) and variable fat layers (1100–2800 µm) resulting in variable low-k as well as temperatures 1.97 °C lower than BTT temperature (BTT°). Highest emission present in only ~3.1% of forehead averaged 1.08±0.49 °C (mean±SD) less than BTT° (p=0.008). Environmental and biological impacts during fanning revealed thermal imaging limitations for COVID-19 screening. Comparison of paired measurements for 100 pediatric patients showed that in the children subgroup above 37°C, BTT° exceeded body core temperature (Core°) in 60/72 patients; the average difference in the 72 patients was 0.62±0.7°C  (p<0.001 by unpaired t-test); and in the subgroup beyond 37.5°C, BTT° exceeded Core° in 30/32 patients. Delineating hypothalamic activity in children facilitates early infection detection, which is essential because children’s immunogenicity prevents effective vaccination and causes accelerated viral evolution. Capturing hypothalamic thermal signals from BTT was further supported by brain thermal kinetics via BTT using wearables during anesthesia, sedation, sleep, brain injury, exercise, and asymptomatic infection, which revealed brain/core discordance and enabled automated noninvasive afebrile infection detection for interrupting asymptomatic human-to-human transmission. BTT-based spot-check thermometry can be harmlessly implemented for children worldwide without undue burden and costs; meanwhile, continuous brain-eyelid T° in concert with biological and physical principles affords a new dimension for combating pandemics. The “detection–vaccination” pair solution presented is required to mitigate COVID-19 from spreading indefinitely through mutations and vaccine evasion while opening a viable path for eradicating COVID-19.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1084
Author(s):  
Jared Ruff ◽  
Guillermo Tellez ◽  
Aaron J. Forga ◽  
Roberto Señas-Cuesta ◽  
Christine N. Vuong ◽  
...  

The objective of the present research was to assess the dietary supplementation of three formulations of essential oils (EO) in chickens under heat stress (HS). Day-of-hatch Cobb 500 chicks (n = 500) were randomly distributed into four groups: 1. HS control + control diets; 2. HS + control diets supplemented with 37 ppm EO of Lippia origanoides (LO); 3. HS + control diets supplemented with 45 ppm LO + 45 ppm EO of Rosmarinus officinalis (RO) + 300 ppm red beetroot; 4. HS + 45 ppm LO + 45 ppm RO + 300 ppm natural betaine. Chickens that received the EO showed significant (p < 0.05) improvement on BW, BWG, FI, and FCR compared to control HS chickens. Average body core temperature in group 3 and group 4 was significantly (p < 0.05) reduced compared with the HS control group and group 2. Experimental groups showed a significant reduction in FITC-d at 42 days, a significant increase in SOD at both days but a significant reduction of IFN-γ and IgA compared with HS control (p < 0.05). Bone mineralization was significantly improved by EO treatments (p < 0.05). Together these data suggest that supplemental dietary EO may reduce the harmful effects of HS.


2017 ◽  
Vol 14 (9) ◽  
pp. 703-711 ◽  
Author(s):  
Dallon T. Lamarche ◽  
Robert D. Meade ◽  
Andrew W. D'Souza ◽  
Andreas D. Flouris ◽  
Stephen G. Hardcastle ◽  
...  

1981 ◽  
Vol 211 (1184) ◽  
pp. 305-319 ◽  

We have found that camels can reduce the water loss due to evaporation from the respiratory tract in two ways: (1) by decreasing the temperature of the exhaled air and (2) by removal of water vapour from this air, resulting in the exhalation of air at less than 100% relative humidity (r. h.). Camels were kept under desert conditions and deprived of drinking water. In the daytime the exhaled air was at or near body core temperature, while in the cooler night exhaled air was at or near ambient air temperature. In the daytime the exhaled air was fully saturated, but at night its humidity might fall to approximately 75% r. h. The combination of cooling and desaturation can provide a saving of water of 60% relative to exhalation of saturated air at body temperature. The mechanism responsible for cooling of the exhaled air is a simple heat exchange between the respiratory air and the surfaces of the nasal passageways. On inhalation these surfaces are cooled by the air passing over them, and on exhalation heat from the exhaled air is given off to these cooler surfaces. The mechanism responsible for desaturation of the air appears to depend on the hygroscopic properties of the nasal surfaces when the camel is dehydrated. The surfaces give off water vapour during inhalation and take up water from the respiratory air during exhalation. We have used a simple mechanical model to demonstrate the effectiveness of this mechanism.


2008 ◽  
Vol 294 (2) ◽  
pp. F309-F315 ◽  
Author(s):  
Joo Lee Cham ◽  
Emilio Badoer

Redistribution of blood from the viscera to the peripheral vasculature is the major cardiovascular response designed to restore thermoregulatory homeostasis after an elevation in body core temperature. In this study, we investigated the role of the hypothalamic paraventricular nucleus (PVN) in the reflex decrease in renal blood flow that is induced by hyperthermia, as this brain region is known to play a key role in renal function and may contribute to the central pathways underlying thermoregulatory responses. In anesthetized rats, blood pressure, heart rate, renal blood flow, and tail skin temperature were recorded in response to elevating body core temperature. In the control group, saline was microinjected bilaterally into the PVN; in the second group, muscimol (1 nmol in 100 nl per side) was microinjected to inhibit neuronal activity in the PVN; and in a third group, muscimol was microinjected outside the PVN. Compared with control, microinjection of muscimol into the PVN did not significantly affect the blood pressure or heart rate responses. However, the normal reflex reduction in renal blood flow observed in response to hyperthermia in the control group (∼70% from a resting level of 11.5 ml/min) was abolished by the microinjection of muscimol into the PVN (maximum reduction of 8% from a resting of 9.1 ml/min). This effect was specific to the PVN since microinjection of muscimol outside the PVN did not prevent the normal renal blood flow response. The data suggest that the PVN plays an essential role in the reflex decrease in renal blood flow elicited by hyperthermia.


2002 ◽  
Vol 80 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Frédéric Canini ◽  
Nadine Simler ◽  
Lionel Bourdon

The effects of MK801 (dizocilpine), a glutamate NMDA receptor antagonist, on thermoregulation in the heat were studied in awake rats exposed to 40°C ambient temperature until their body core temperature reached 43°C. Under these conditions, MK801-treated rats exhibited enhanced locomotor activity and a steady rise in body core temperature, which reduced the heat exposure duration required to reach 43°C. Since MK801-treated rats also showed increased striatal dopaminergic metabolism at thermoneutrality, the role of dopamine in the MK801-induced impairment of thermoregulation in the heat was determined using co-treatment with SCH23390, a dopamine D1 receptor antagonist. SCH23390 normalized the locomotor activity in the heat without any effect on the heat exposure duration. These results suggest that the MK801-induced impairment of thermoregulation in the heat is related to neither a dopamine metabolism alteration nor a locomotor activity enhancement.Key words: heatstroke, NMDA receptor, thermoregulation, dopamine, locomotion.


Sign in / Sign up

Export Citation Format

Share Document