Switch in the overwintering strategy of two insect species and latitudinal differences in cold hardiness

1989 ◽  
Vol 67 (4) ◽  
pp. 825-827 ◽  
Author(s):  
Olga Kukal ◽  
John G. Duman

A switch from freezing tolerance to freezing intolerance (avoidance) occurred between winter 1980 and winter 1981 in Dendroides canadensis and between 1979 and 1983 in Cucujus clavipes at the same geographical location in northern Indiana (41°30′N). This change in overwintering strategy was not related to latitudinal interpopulation differences, because different populations (latitude range 35°30′N–45°20′N) subsequently sampled were all intolerant of freezing. A 1-week midwinter thaw had no effect on the overwintering mode or cold hardiness of the midlatitude population of D. canadensis. However, high-latitude populations of D. canadensis were more cold hardy (survived 24-h freezing at temperatures above −25 °C) than populations from low latitudes (survived freezing at temperatures above −15 °C). All individuals of the northernmost populations survived low temperatures (−15 °C for 2 weeks) whereas only 14% of the southern-ranging individuals survived that temperature regime.

1979 ◽  
Vol 57 (9) ◽  
pp. 997-999 ◽  
Author(s):  
R. J. Reader

In laboratory freezing trials, cold hardiness of six types of bog ericad flowers differed significantly (i.e., Chamaedaphne calyculata > Andromeda glaucophylla > Kalmia polifolia > Vaccinium myrtilloides > Ledum groenlandicum > Vaccinium macrocarpon) at air temperatures between −4 and −10 °C but not at temperatures above −2 °C. At the Luther Marsh bog in southern Ontario, low temperatures (−3 to −7 °C) would select against May flowering by the least cold hardy ericads. Availability of pollinators, on the other hand, would encourage May flowering by the most cold hardy species. Presumably, competition for insect pollinators has promoted the diversification of bog ericad flowering peaks, while air temperature, in conjunction with flower cold hardiness, determined the order in which flowering peaks were reached.


1964 ◽  
Vol 96 (4) ◽  
pp. 617-625 ◽  
Author(s):  
A. W. MacPhee

AbstractIn Kings County, Nova Scotia, low temperatures in the coldest nights of winter can differ by as much as 10°F. from one area to another. This has an important bearing on winter survival of some arthropods. Overwintering sites of orchard arthropods range from exposed situations which remain at air temperature to well protected ones on the ground where temperatures rarely go below 20°F. The cold-hardiness of each of 24 species of arthropods was measured: seven were sufficiently cold-hardy to survive any winter conditions in Nova Scotia, five were less cold-hardy but overwinter in well protected sites and twelve had marginal cold-hardiness, their mortality varying with the winter and the locality.


HortScience ◽  
1991 ◽  
Vol 26 (1) ◽  
pp. 59-60 ◽  
Author(s):  
Fadi H. Karam ◽  
J. Alan Sullivan

Distinct differences in freezing tolerance among a cold-hardy wild rose species Rosa fedtschenkoana Regel., a garden rose, `Jack Frost', and their hybrid could be detected under laboratory conditions using 2-cm-long shoot segments with buds. The garden rose did not survive - SC, but the cold-hardy species survived freezing to -10C and the hybrid to –5C. One week of acclimation at 4C was adequate for R. fedtschenkoana; longer periods did not improve the rate of survival. Immersing tissue in 5%, 10%, or 20% sucrose during acclimation improved the rate of survival of R. fedtschenkoana but not of `Jack Frost'. Applications to rose breeding are discussed.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1038A-1038
Author(s):  
Hrvoje Rukavina ◽  
Harrison Hughes ◽  
Yaling Qian

Freezing is the major abiotic stress that limits geographical distribution of warm-season turfgrasses. Prior studies have indicated variation in freezing tolerance in saltgrass clones. Therefore, this 2-year study examined the freezing tolerance of 27 saltgrass clones as related to collection sites in three zones of cold hardiness. Furthermore, these clones were evaluated for time of leaf browning in the fall with the intent to determine if there was a correlation between this trait and freezing tolerance. Rhizomes were sampled during 2004 and 2005 midwinters from clones established in Fort Collins, Colo., and then subjected to a freezing test. Saltgrass freezing tolerance was highly influenced by the climatic zone of clone origin in both years of the experiment. Clones with greater freezing tolerance turned brown earlier in fall in both seasons. Ranking of zones for the average LT50 was: zone 4 (–17.2 °C) < zone 5 (–14.4 °C) < zone 6 (–11.1 °C) in 2004 and zone 4 (–18.3 °C) < zone 5 (–15.7 °C) < zone 6 (–13.1 °C) in 2005. Clones from northern areas tolerated lower freezing temperatures better overall. This confirmed that freezing tolerance is inherited. Large intraspecific variation in freezing tolerance may be effectively used in developing cold-hardy cultivars.


2021 ◽  
Vol 4 ◽  
Author(s):  
Devin Noordermeer ◽  
Vera Marjorie Elauria Velasco ◽  
Ingo Ensminger

During autumn, evergreen conifers utilize the decrease in daylength and temperature as environmental signals to trigger cold acclimation, a process that involves the downregulation of photosynthesis, upregulation of photoprotection, and development of cold hardiness. Global warming will delay the occurrence of autumn low temperatures while daylength remains unaffected. The impact of autumn warming on cold acclimation and the length of the carbon uptake period of species with ranges that encompass diverse climates, such as Douglas-fir (Pseudotsuga menziesii), remains unclear. Our study investigated intraspecific variation in the effects of autumn warming on photosynthetic activity, photosynthetic pigments, and freezing tolerance in two interior (var. glauca) and two coastal (var. menziesii) Douglas-fir provenances. Following growth under simulated summer conditions with long days (16 h photoperiod) and summer temperatures (22/13°C day/night), Douglas-fir seedlings were acclimated to simulated autumn conditions with short days (8 h photoperiod) and either low temperatures (cool autumn, CA; 4/−4°C day/night) or elevated temperatures (warm autumn, WA; 19/11°C day/night). Exposure to low temperatures in the CA treatment induced the downregulation of photosynthetic carbon assimilation and photosystem II efficiency, increased the size and de-epoxidation of the xanthophyll cycle pigment pool, and caused the development of sustained nonphotochemical quenching (NPQ). Seedlings in the WA treatment exhibited no downregulation of photosynthesis, no change in xanthophyll cycle pigment de-epoxidation, and no development of sustained NPQ. Albeit these changes, freezing tolerance was not impaired under WA conditions compared with CA conditions. Interior Douglas-fir seedlings developed greater freezing tolerance than coastal seedlings. Our findings suggest that autumn warming, i.e., short photoperiod alone, does not induce the downregulation of photosynthesis in Douglas-fir. Although autumn warming delays the downregulation of photosynthesis, the prolonged period of photosynthetic activity does not bear a trade-off of impaired freezing tolerance.


1985 ◽  
Vol 65 (4) ◽  
pp. 893-900 ◽  
Author(s):  
D. W. A. ROBERTS

Nine cultivars of common wheat (Triticum aestivum L.) ranging from very cold hardy to tender were sprouted in vermiculite at 0.5–1.0 °C for 7 wk in the dark and then placed at 0.5 °C, −2.5 °C, −5 °C, −7.5 °C, or −10 °C for up to 20 wk. Plants held at 0.5 °C progressively lost hardiness. Little change occurred in the hardiness of plants moved to −2.5 °C. There was apparently a small initial increase in hardiness after transfer to −5 °C or −7.5 °C followed by a decline in hardiness. Plants transferred to −10 °C lost hardiness progressively after transfer. These results suggest that part of the reason for late-winter mortality of winter wheats in northern regions of the Canadian prairies is damage from long exposures to temperatures only slightly lower than −5 °C. This damage is manifested by higher LT50 values or lower cold hardiness in late winter and early spring.Key words: Triticum aestivum L., cold hardiness, winter survival


HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 157-160 ◽  
Author(s):  
Hrvoje Rukavina ◽  
Harrison G. Hughes ◽  
Yaling Qian

Freezing is the major abiotic stress that limits geographic distribution of warm season turfgrasses. Prior studies have indicated variation in freezing tolerance in saltgrass clones. Therefore, this study examined freezing tolerance of 27 saltgrass clones as related to collection sites in three zones of cold hardiness. Furthermore, these clones were evaluated for time of leaf browning in the fall with the intent to determine if there was a correlation between this trait and freezing tolerance. Rhizomes were sampled during 2004 and 2005 midwinters from clones established in Fort Collins, Colo., and then subjected to a freezing test in a programmable freezer. Saltgrass freezing tolerance was highly influenced by the climatic zone of clone origin in both years of the experiment. Clones with greater freezing tolerance turned brown earlier in fall in both seasons. Ranking of zones for the average LT50 (lethal temperature at which 50% of rhizomes died) was: zone 4, most northern (−17.2 °C) < zone 5 (−14.4 °C), < zone 6, most southern (−11.1 °C) in 2004, and zone 4 (−18.3 °C), < zone 5 (−15.7 °C) < zone 6 (−13.1 °C) in 2005. Clones from northern areas tolerated lower freezing temperatures overall. This likely indicates that freezing tolerance is inherited. Large intraspecific variation in freezing tolerance may be effectively used in developing cold hardy cultivars.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1106D-1106
Author(s):  
Hrvoje Rukavina ◽  
Harrison Hughes ◽  
Yaling Qian

Efforts are ongoing at Colorado State University to develop turf-type saltgrass cultivars. Prior freezing studies have indicated variation in freezing tolerance in saltgrass lines. Therefore, this study was made to examine relative freezing tolerance of 27 saltgrass clones as related to collection sites in three zones of cold hardiness. Furthermore, these lines were evaluated for fall color retention with the intent to determine if there is a correlation with fall color and freezing tolerance. Saltgrass rhizomes were sampled in mid-winter 2004 from lines established in Fort Collins, Colo., and then subjected to a laboratory-freezing test. Saltgrass freezing tolerance was highly influenced by climate zones of clones' origin (P < 0.01) and genotypes within zones (P < 0.01). There was a high negative correlation between color retention in the fall and freezing tolerance (P < 0.01). Average freezing tolerance of saltgrass clones within zones of origin significantly differed among zones. Ranking of zones for least square mean LT50 (OC) was: zone 4 (–17.2) < zone 5 (-14.4) < zone 6 (–11.1). LT50 values in zone 4 ranged from –17.8 (accession 72) to –17.0 (accession 87). Clones in zone 5 showed LT50 values from –17.8 (accession A29) to –11.9 (accession A137). Zone 6 clones had LT50 values that ranged from –9.5 (accession C92) to –12.6 (accession C12). Large intraspecific variation in freezing tolerance may be effectively used in new cold hardy cultivar development. Environmental adaptation inherited by origin of clone is useful in defining clones' adaptation range and may along with fall color retention serve as a selection criterion in saltgrass cold hardiness improvement.


HortScience ◽  
1993 ◽  
Vol 28 (7) ◽  
pp. 740-741 ◽  
Author(s):  
Annette M. Zatylny ◽  
J.T.A. Proctor ◽  
J.A. Sullivan

Two selections and two cultivars of red raspberry (Rubus idaeus L.) were evaluated for cold hardiness in vitro. Tissue-cultured shoots were exposed to temperatures from 0 to –18C and samples were removed at 2C intervals. Injury was assessed by a visual rating of tissue browning after freezing. Only shoots subjected to step-wise acclimation at low temperatures before freezing revealed significant differences among the four types in the lowest shoot survival temperature. Acclimation treatments increased the lowest survival temperatures of in vitro shoots by a mean of 3.1C. The hardiness obtained from this screening method agreed with that of winter survival in the field. Ranking, from the most to least cold hardy, was `Boyne', Gu 72, Gu 63, and `Comox'.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 862C-862
Author(s):  
Adriana Robbins ◽  
Ying Jia ◽  
Eliezer Louzada*

In Texas, the freezes of 1951 and 1962 together killed 125,000 acres of citrus trees and the freeze of 1983 killed 40,000 acres. The low temperature is one of the most important abiotic stresses to be understood and manipulated molecularly. Cold hardiness is found in the deciduous citrus relative, trifoliate orange, which can withstand temperatures as low as -26 °C when it is cold acclimated. Exposure of the cold hardy trifoliate orange plants to temperature from 28 °C to -5 °C enabled us to isolate and characterize one novel citrus low temperature gene (clt) with two transcripts, called clt-a and clt-b from leaves and twigs. Clt-a was produced when plants were subjected to low temperatures (starting at 10 °C), while cltb was constitutively expressed. Both clt-a and clt-b have the same open reading frame of 165 nucleotides and encodes a small protein of 54 amino acid. However, clt-a has an additional 98 bp nucleotides at the 3'-untranslated region (UTR), which is absent in clt-b. Expression analysis using relative quantitative RT-PCR demonstrated that clt-a is expressed exclusively at low temperatures, while clt-b is expressed constitutively (expression verified from 2 °C to -5 °C). In the process of deacclimation from -1 °C to 28 °C, the clt-a transcript degraded dramatically after 2 °C and was completely absent at 28 °C, while the clt-b transcript remain stable. When the acclimated plant was taken from -1 °C to room temperature, the clt-a gene degraded within 2 hours. Moreover, when acclimated plant was continuously exposed at -1 °C for 20 days, both transcripts clt-a and clt-b remained stable. Involvement of alternative splicing in transcript stability will be discussed.


Sign in / Sign up

Export Citation Format

Share Document