Home range and movements of postfledging American black ducks in eastern Maine

1990 ◽  
Vol 68 (6) ◽  
pp. 1288-1291 ◽  
Author(s):  
Catherine Frazer ◽  
Jerry R. Longcore ◽  
Daniel G. McAuley

We monitored the movements of 97 female and 15 male juvenile American black ducks (Anas rubripes) in the vicinity of Moosehom National Wildlife Refuge in eastern Maine and southwestern New Brunswick from September through mid-December, 1985–1987. Movements were described by estimating home ranges and radial movements from the primary roost marsh. Overall home range sizes averaged 4987 ha (range 54 – 28 070 ha), and maximum distances moved from the roost averaged 9.9 km (range 0.9–42.8 km). Home ranges were linear (linearity index 2.8), and home range area and distance of movements from the roost both increased monthly. Ducks that used >15% riverine habitat had larger home ranges and moved greater distances from the roost than ducks using <15% riverine wetlands. Movements did not differ between ducks usually alone and those usually in flocks. Juvenile black ducks moved in small flocks and were often alone (34% of 355 observations). Most ducks showed fidelity to one roost-marsh complex from September until migration in late November. Daily and seasonal movement patterns were similar to those predicted for refuging systems.

2009 ◽  
Vol 36 (5) ◽  
pp. 422 ◽  
Author(s):  
K. E. Moseby ◽  
J. Stott ◽  
H. Crisp

Control of introduced predators is critical to both protection and successful reintroduction of threatened prey species. Efficiency of control is improved if it takes into account habitat use, home range and the activity patterns of the predator. These characteristics were studied in feral cats (Felis catus) and red foxes (Vulpes vulpes) in arid South Australia, and results are used to suggest improvements in control methods. In addition, mortality and movement patterns of cats before and after a poison-baiting event were compared. Thirteen cats and four foxes were successfully fitted with GPS data-logger radio-collars and tracked 4-hourly for several months. High intra-specific variation in cat home-range size was recorded, with 95% minimum convex polygon (MCP) home ranges varying from 0.5 km2 to 132 km2. Cat home-range size was not significantly different from that of foxes, nor was there a significant difference related to sex or age. Cats preferred habitat types that support thicker vegetation cover, including creeklines and sand dunes, whereas foxes preferred sand dunes. Cats used temporary focal points (areas used intensively over short time periods and then vacated) for periods of up to 2 weeks and continually moved throughout their home range. Aerial baiting at a density of 10 baits per km2 was ineffective for cats because similar high mortality rates were recorded for cats in both baited and unbaited areas. Mortality was highest in young male cats. Long-range movements of up to 45 km in 2 days were recorded in male feral cats and movement into the baited zone occurred within 2 days of baiting. Movement patterns of radio-collared animals and inferred bait detection distances were used to suggest optimum baiting densities of ~30 baits per km2 for feral cats and 5 per km2 for foxes. Feral cats exhibited much higher intra-specific variation in activity patterns and home-range size than did foxes, rendering them a potentially difficult species to control by a single method. Control of cats and foxes in arid Australia should target habitats with thick vegetation cover and aerial baiting should ideally occur over areas of several thousand square kilometres because of large home ranges and long-range movements increasing the chance of fast reinvasion. The use of temporary focal points suggested that it may take several days or even weeks for a cat to encounter a fixed trap site within their home range, whereas foxes should encounter them more quickly as they move further each day although they have a similar home-range size. Because of high intra-specific variability in activity patterns and home-range size, control of feral cats in inland Australia may be best achieved through a combination of control techniques.


Koedoe ◽  
2015 ◽  
Vol 57 (1) ◽  
Author(s):  
Peter M. Calverley ◽  
Colleen T. Downs

The study of movement patterns and home range is fundamental in understanding the spatial requirements of animals and is important in generating information for the conservation and management of threatened species. Ndumo Game Reserve, in north-eastern KwaZulu-Natal, bordering Mozambique, has the third largest Nile crocodile (Crocodylus niloticus) population in South Africa. Movement patterns of 50 Nile crocodiles with a total length of between 202 cm and 472 cm were followed over a period of 18 months, using mark-resight, radio and satellite telemetry. The duration of radio transmitter attachment (131 ± 11.4 days) was significantly and negatively related to total length and reproductive status. Satellite transmitters failed after an average of 15 ± 12.5 days. Home range was calculated for individuals with 10 or more radio locations, spanning a period of at least 6 months. There was a significant relationship between home range size and total length, with sub-adults (1.5 m – 2.5 m) occupying smaller, more localised home ranges than adults (> 2.5 m). The largest home ranges were for adults (> 2.5 m). Home ranges overlapped extensively, suggesting that territoriality, if present, does not result in spatially discrete home ranges of Nile crocodiles in Ndumo Game Reserve during the dry season. Larger crocodiles moved farther and more frequently than smaller crocodiles. The reserve acts as a winter refuge and spring breeding site for an estimated 846 crocodiles, which also inhabit the Rio Maputo during the summer months. Nile crocodile movement out of the reserve and into the Rio Maputo starts in November and crocodiles return to the reserve as water levels in the floodplain recede in May.Conservation implications: Movement patterns of Nile crocodiles show the important role the reserve plays in the conservation of Nile crocodile populations within the greater Ndumo Game Reserve–Rio Maputo area.


2017 ◽  
Author(s):  
Hino Takafumi ◽  
Tatsuya Kamii ◽  
Takunari Murai ◽  
Ryoto Yoshida ◽  
Atsuki Sato ◽  
...  

The sika deer (Cervus nippon yesoensis) population in the Ramsar-listed Kushiro Wetland has increased in recent years, and the Ministry of the Environment of Japan has decided to take measures to reduce the impact these sika deer are having on the ecosystem. However, their seasonal movement patterns, i.e., when and how the deer inhabit the wetland, remain unclear. Thus, we examined seasonal movement patterns and the population structure of sika deer in the Kushiro Wetland from 2013 to 2015 by analyzing GPS location data for 28 hinds captured at three sites in the wetland. Seasonal movement patterns were quantitatively classified as seasonal migration, dispersal, nomadic, resident, or atypical, and the degree of wetland utilization for each individual was estimated. The overlap areas of population-level home ranges among capture sites were calculated for both the entire year and for individual seasons. Our results showed that approximately one-third of the individuals moved into and out of the wetland during the year as either seasonal migrants or individuals with atypical movement. Some of the individuals migrated to farmland areas outside the wetland (the farthest being 64 km away). Half of the individuals inhabited the wetland all or most of the year, i.e., 81–100% of their annual home range was within the wetland area. The movement patterns of these deer were classified not only as resident but also as seasonal migration, dispersal, nomadic, and atypical. Even among individuals captured at the same site, various seasonal movement patterns were identified. Annual population-level home ranges showed little to no overlap, and seasonal population-level home ranges were completely segregated among capture sites. Individual deer used the wetland either seasonally or year-round, and some populations inhabiting the wetland had sub-populations with different seasonal movement patterns, which need to be considered to achieve more effective ecosystem management including deer management in the wetland.


1995 ◽  
Vol 43 (1) ◽  
pp. 91 ◽  
Author(s):  
JL Gardner ◽  
M Serena

Home-range size and overlap and movement patterns of adult male platypus, Ornithorhynchus anatinus, occupying streams in southern Victoria were investigated near the start of the breeding season using radio-tracking techniques. On the basis of a sample of males monitored for four or more complete activity periods, home-range size varied from 2.9 to 7.0 km, with individuals (n = 4) moving a mean net distance of 2.0 +/- 1.4 km per activity period. Longer-range movements were also observed, with one male travelling at least 15 km from one stream catchment to another via an intervening stretch of river. Some home ranges of males were mutually exclusive whereas others overlapped substantially; in the latter case, males largely avoided each other, spending most of their time in different parts of the shared area. All home ranges of males apparently overlapped those of two or more adult females. Three patterns of travel over complete activity periods were recognised, including unidirectional travel (point A to B), return travel (A to B to A) and multidirectional travel with multiple, relatively short-range backtracking. Males occupying overlapping areas often moved multidirectionally and rarely undertook unidirectional travel, whereas the converse applied to males occupying exclusive areas.


Author(s):  
Inês Silva ◽  
Matt Crane ◽  
Benjamin Michael Marshall ◽  
Colin Thomas Strine

AbstractAnimal movement, expressed through home ranges, can offer insights into spatial and habitat requirements. However, home range estimation methods vary, directly impacting conclusions. Recent technological advances in animal tracking (GPS and satellite tags), have enabled new methods for home range estimation, but so far have primarily targeted mammal and avian movement patterns. Most reptile home range studies only make use of two older estimation methods: Minimum Convex Polygons (MCP) and Kernel Density Estimators (KDE), particularly with the Least Squares Cross Validation (LSCV) and reference (href) bandwidth selection algorithms. The unique characteristics of reptile movement patterns (e.g. low movement frequency, long stop-over periods), prompt an investigation into whether newer movement-based methods –such as dynamic Brownian Bridge Movement Models (dBBMMs)– are applicable to Very High Frequency (VHF) radio-telemetry tracking data. To assess home range estimation methods for reptile telemetry data, we simulated animal movement data for three archetypical reptile species: a highly mobile active hunter, an ambush predator with long-distance moves and long-term sheltering periods, and an ambush predator with short-distance moves and short-term sheltering periods. We compared traditionally used home range estimators, MCP and KDE, with dBBMMs, across eight feasible VHF field sampling regimes for reptiles, varying from one data point every four daylight hours, to once per month. Although originally designed for GPS tracking studies, we found that dBBMMs outperformed MCPs and KDE href across all tracking regimes, with only KDE LSCV performing comparably at some higher-frequency sampling regimes. The performance of the LSCV algorithm significantly declined with lower-tracking-frequency regimes, whereas dBBMMs error rates remained more stable. We recommend dBBMMs as a viable alternative to MCP and KDE methods for reptile VHF telemetry data: it works under contemporary tracking protocols and provides more stable estimates, improving comparisons across regimes, individuals and species.


2009 ◽  
Vol 87 (10) ◽  
pp. 876-885 ◽  
Author(s):  
T. W. Grovenburg ◽  
J. A. Jenks ◽  
R. W. Klaver ◽  
C. C. Swanson ◽  
C. N. Jacques ◽  
...  

Knowledge of movement patterns of white-tailed deer ( Odocoileus virginianus (Zimmermann, 1780)) inhabiting landscapes intensively modified by agricultural systems is important to the present and future understanding of deer ecology. Little information exists regarding daily and seasonal movements of white-tailed deer in north-central South Dakota. Therefore, our goal was to determine movement patterns and home-range use of female white-tailed deer in north-central South Dakota. From January 2005 to January 2007, 29 adult (>18 months) and 13 yearling (8–18 months) white-tailed deer were monitored for movement using radiotelemetry. We collected 2822 locations, calculated 76 home ranges, and documented 50 seasonal movements. Mean migration distance between summer and winter home ranges was 19.4 km (SE = 2.0 km). Mean 95% home-range size was 10.2 km2 (SE = 1.2 km2, n = 27) during winter and 9.2 km2 (SE = 1.0 km2, n = 49) during summer. Ambient temperature appeared to be a primary cause of seasonal migration. Additionally, movements exhibited by white-tailed deer in north-central South Dakota were influenced by a highly fragmented landscape dominated by row crops and pasture or grassland.


2010 ◽  
Vol 37 (5) ◽  
pp. 379 ◽  
Author(s):  
Natasha L. Wiggins ◽  
Grant J. Williamson ◽  
Hamish I. McCallum ◽  
Clive R. McMahon ◽  
David M. J. S. Bowman

Context. Understanding how the individual movement patterns and dispersion of a population change following wildlife management interventions is crucial for effective population management. Aims. We quantified the impacts of two wildlife management strategies, a lethal intervention and a subsequent barrier intervention, on localised populations of the two most common macropod species in Tasmania, the Tasmanian pademelon (Thylogale billardierii) and the red-necked wallaby (Macropus rufogriseus rufogriseus). This manipulation allowed us to examine two competing hypotheses concerning the distribution of individuals in animal populations – the Ideal Free Distribution (IFD) hypothesis and the Rose Petal (RP) hypothesis. We predicted that the RP would be supported if individuals maintained their previous home ranges following intervention, whereas the IFD would be supported if individuals redistributed following the management interventions. Methods. The movement patterns of T. billardierii and M. r. rufogriseus were tracked using GPS technology before and after the two management interventions. Key results. Following lethal intervention, pademelons and wallabies (1) maintained their home-range area, (2) increased their utilisation of agricultural habitat and (3) shifted their mean centroid locations compared with the pre-intervention period. Following barrier intervention, pademelons and wallabies (1) maintained their home-range area, (2) decreased their utilisation of agricultural habitat and (3) shifted their mean centroid locations compared with the pre-intervention period. Conclusions. On the basis of the individual responses of macropods to the management strategies (1) lethal intervention appeared to induce small shifts in home-range distributions of those remaining individuals in the population with home ranges overlapping the areas of lethal intervention and (2) barrier intervention is likely to induce whole-scale population movements of the animals that survive the lethal intervention in their search of an alternative food source. Both species displayed spatial and temporal shifts in their home-range distributions in response to lethal and barrier interventions that appear to conform broadly to predictions of IFD, at least in the timeframe of the present experiment. Implications. Wildlife management strategies, which are increasingly constrained by ethical, socio-political and financial considerations, should be based on ecological and behavioural data regarding the likely responses of the target population.


2018 ◽  
Vol 96 (6) ◽  
pp. 545-552 ◽  
Author(s):  
Alexander M. Chang ◽  
Karen L. Wiebe

Meeting energy requirements during the nonbreeding season is important for many animals and some defend winter territories to secure a food supply. In birds of prey, females, the larger and competitively dominant sex, may monopolize areas with higher prey abundance than males. We thus predicted that female Snowy Owls (Bubo scandiacus (Linnaeus, 1758)), which might acquire the high-quality habitats and individuals in better body condition, would be able to persist on smaller home ranges, travel shorter distances, and spend proportionally more time on a home range than males, during the winter. On the prairies in central Saskatchewan, we deployed satellite transmitters on 11 male and 12 female Snowy Owls over two winters. There were no significant differences between the sexes in home-range size or the amount of travelling during the winter months. Mean first home range (95% minimum convex polygon) size was 54.4 km2 for males, 31.9 km2 (estimated marginal means) for females, and 53.8 km2 for the sexes combined. However, within sexes, home-range size was negatively correlated with body condition as predicted. A lack of defense of home-range perimeters against conspecifics could increase variation in home-range size and movement patterns and reduce differences between the sexes.


2021 ◽  
Author(s):  
Halina Teresa Kobryn ◽  
Edward J. Swinhoe ◽  
Philip W. Bateman ◽  
Peter J. Adams ◽  
Jill M. Shephard ◽  
...  

Abstract The red fox (Vulpes vulpes) is one of the most adaptable carnivorans, thriving in cities across the globe. Understanding movement patterns and habitat use by urban foxes will assist with their management to address wildlife conservation and public health concerns. Here we tracked five foxes across the suburbs of Perth, Western Australia. Three females had a core home range (50% kernel density estimate; KDE) averaging 37 ± 20 ha (range 22–60 ha) or a 95% KDE averaging 174 ± 130 ha (range 92–324 ha). One male had a core home range of 95 ha or a 95% KDE covering 352 ha. The other male covered an area of ~ 4 or ~ 6 times this: having a core home range of 371 ha or 95% KDE of 2,062 ha. All five foxes showed statistically significant avoidance of residential locations and significant preference for parkland. Bushland reserves, golf courses, and water reserves were especially preferred locations. Foxes moved quickest (i.e. commuting) when they were in close proximity to roads and slowest (i.e. foraging) when they were further from roads. We compare these findings with a review of the literature for urban fox home ranges. The movement patterns we describe are likely to be common for urban foxes, with half of the published home range estimates for urban foxes (principally based on VHF data) excluding data for ‘lost’ individuals or animals that showed ‘excursions’. It is likely that the home range estimates for these urban exploiters have therefore been grossly underestimated to date. Further application of GPS trackers that allow remote download will vastly improve our understanding of the space use of urban foxes.


Sign in / Sign up

Export Citation Format

Share Document