Positive associations among riparian bird species correspond to elevational changes in plant communities

1991 ◽  
Vol 69 (4) ◽  
pp. 951-963 ◽  
Author(s):  
Deborah M. Finch

Bird count data were used to characterize patterns of abundance and distribution among 20 bird species occupying streamside habitats of the central Rocky Mountains. Cluster analysis classified bird assemblages from 10 study plots into three elevational zones that varied in bird species diversity. Monotonic declines in total bird densities over the elevational gradient corresponded to spatial fluctuations in population levels of a few numerically dominant species. Of 190 correlations in counts of species pairs, 48 were significant, a much greater proportion than that expected by chance. Only 12 of the 48 associations were negative, suggesting that current competition may be less important than other processes in structuring these communities. Five suites of the positively associating species were detected using cluster, correlational, and variance analyses. Aggregated species responded to habitat ecotones by simultaneously increasing or decreasing in abundance. Group composition was dependent on patterns of species distribution among elevational zones, and on whether species were specialists or generalists in habitat use. Abundances of 19 species were related to five habitat gradients created by principal components analysis of habitat structure. A reasonable explanation for positive covariance in bird abundance is that species responded similarly to limiting resources that were associated with elevational zones.

Ecography ◽  
2000 ◽  
Vol 23 (1) ◽  
pp. 50-59 ◽  
Author(s):  
Ian G. Henderson ◽  
Juliet A. Vickery ◽  
Robert J. Fuller

2019 ◽  
Author(s):  
Federico Morelli ◽  
Yanina

ContextThe negative association between elevation and species richness is a well-recognized pattern in macro-ecology. ObjectivesThe aim of this study was to investigate changes in functional evenness of breeding bird communities along an elevation gradient in Europe. MethodsUsing the bird data from the EBCC Atlas of European Breeding Birds we estimated an index of functional evenness which can be assumed as a measure of the potential resilience of communities.ResultsOur findings confirm the existence of a negative association between elevation and bird species richness in all European eco regions. However, we also explored a novel aspect of this relationship, important for conservation: Our findings provide evidence at large spatial scale of a negative association between the functional evenness (potential community resilience) and elevation, independent of the eco region. We also found that the Natura2000 protected areas covers the territory most in need of protection, those characterized by bird communities with low potential resilience, in hilly and mountainous areas.ConclusionsThese results draw attention to European areas occupied by bird communities characterized by a potential lower capacity to respond to strong ecological changes, and, therefore, potentially more exposed to risks for conservation.


The Condor ◽  
2021 ◽  
Author(s):  
Kyle D Kittelberger ◽  
Montague H C Neate-Clegg ◽  
Evan R Buechley ◽  
Çağan Hakkı Şekercioğlu

Abstract Tropical mountains are global hotspots for birdlife. However, there is a dearth of baseline avifaunal data along elevational gradients, particularly in Africa, limiting our ability to observe and assess changes over time in tropical montane avian communities. In this study, we undertook a multi-year assessment of understory birds along a 1,750 m elevational gradient (1,430–3,186 m) in an Afrotropical moist evergreen montane forest within Ethiopia’s Bale Mountains. Analyzing 6 years of systematic bird-banding data from 5 sites, we describe the patterns of species richness, abundance, community composition, and demographic rates over space and time. We found bimodal patterns in observed and estimated species richness across the elevational gradient (peaking at 1,430 and 2,388 m), although no sites reached asymptotic species richness throughout the study. Species turnover was high across the gradient, though forested sites at mid-elevations resembled each other in species composition. We found significant variation across sites in bird abundance in some of the dietary and habitat guilds. However, we did not find any significant trends in species richness or guild abundances over time. For the majority of analyzed species, capture rates did not change over time and there were no changes in species’ mean elevations. Population growth rates, recruitment rates, and apparent survival rates averaged 1.02, 0.52, and 0.51 respectively, and there were no elevational patterns in demographic rates. This study establishes a multi-year baseline for Afrotropical birds along an elevational gradient in an under-studied international biodiversity hotspot. These data will be critical in assessing the long-term responses of tropical montane birdlife to climate change and habitat degradation.


2012 ◽  
Vol 279 (1742) ◽  
pp. 3520-3526 ◽  
Author(s):  
Brian Tilston Smith ◽  
Amei Amei ◽  
John Klicka

Climatic and geological changes across time are presumed to have shaped the rich biodiversity of tropical regions. However, the impact climatic drying and subsequent tropical rainforest contraction had on speciation has been controversial because of inconsistent palaeoecological and genetic data. Despite the strong interest in examining the role of climatic change on speciation in the Neotropics there has been few comparative studies, particularly, those that include non-rainforest taxa. We used bird species that inhabit humid or dry habitats that dispersed across the Panamanian Isthmus to characterize temporal and spatial patterns of speciation across this barrier. Here, we show that these two assemblages of birds exhibit temporally different speciation time patterns that supports multiple cycles of speciation. Evidence for these cycles is further corroborated by the finding that both assemblages consist of ‘young’ and ‘old’ species, despite dry habitat species pairs being geographically more distant than pairs of humid habitat species. The matrix of humid and dry habitats in the tropics not only allows for the maintenance of high species richness, but additionally this study suggests that these environments may have promoted speciation. We conclude that differentially expanding and contracting distributions of dry and humid habitats was probably an important contributor to speciation in the tropics.


ISRN Ecology ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Jordan W. Mora ◽  
John N. Mager III ◽  
Douglas J. Spieles

We used aerial photography, field measurements, and bird surveys to evaluate 7 Ohio mitigation wetlands for their capacity to support avian guilds at both local and landscape scales. At the local scale, we assessed each wetland with habitat suitability indices (HSI) for eight wetland-dependent bird species as indicators for four guilds: wading, diving, dabbling, and emergent dependent. We characterized landscapes within 2.5 km of each wetland by measuring the buffer width, road density, connectedness, and anthropogenic land development. The changes in landscape variables over time were determined by comparison of aerial photos taken near the time of wetland construction and near the time of this study. Bird abundance data were poorly correlated with HSI scores but were well described with logistic models of buffer width, wetland area, and road density. Our results suggest that landscape variables are better predictors of bird abundance than HSI scores for these guilds in these wetlands.


2018 ◽  
Vol 285 (1874) ◽  
pp. 20172081 ◽  
Author(s):  
Paola Pulido-Santacruz ◽  
Alexandre Aleixo ◽  
Jason T. Weir

We possess limited understanding of how speciation unfolds in the most species-rich region of the planet—the Amazon basin. Hybrid zones provide valuable information on the evolution of reproductive isolation, but few studies of Amazonian vertebrate hybrid zones have rigorously examined the genome-wide underpinnings of reproductive isolation. We used genome-wide genetic datasets to show that two deeply diverged, but morphologically cryptic sister species of forest understorey birds show little evidence for prezygotic reproductive isolation, but substantial postzygotic isolation. Patterns of heterozygosity and hybrid index revealed that hybrid classes with heavily recombined genomes are rare and closely match simulations with high levels of selection against hybrids. Genomic and geographical clines exhibit a remarkable similarity across loci in cline centres, and have exceptionally narrow cline widths, suggesting that postzygotic isolation is driven by genetic incompatibilities at many loci, rather than a few loci of strong effect. We propose Amazonian understorey forest birds speciate slowly via gradual accumulation of postzygotic genetic incompatibilities, with prezygotic barriers playing a less important role. Our results suggest old, cryptic Amazonian taxa classified as subspecies could have substantial postzygotic isolation deserving species recognition and that species richness is likely to be substantially underestimated in Amazonia.


The Auk ◽  
1986 ◽  
Vol 103 (3) ◽  
pp. 593-602 ◽  
Author(s):  
Richard L. Hutto ◽  
Sandra M. Pletschet ◽  
Paul Hendricks

Abstract We provide a detailed description of a fixed-radius point count method that carries fewer assumptions than most of the currently popular methods of estimating bird density and that can be used during both the nonbreeding and breeding seasons. The method results in three indices of bird abundance, any of which can be used to test for differences in community composition among sites, or for differences in the abundance of a given bird species among sites. These indices are (1) the mean number of detections within 25 m of the observer, (2) the frequency of detections within 25 m of the observer, and (3) the frequency of detections regardless of distance from the observer. The overall ranking of species abundances from a site is similar among the three indices, but discrepancies occur with either rare species that are highly detectable at great distances or common species that are repulsed by, or inconspicuous when near, the observer. We argue that differences in the behavior among species will preclude an accurate ranking of species by abundance through use of this or any other counting method in current use.


2005 ◽  
Vol 65 (4) ◽  
pp. 683-695 ◽  
Author(s):  
R. Cintra ◽  
T. M. Sanaiotti

The effects of fire on the composition of a bird community were investigated in an Amazonian savanna near Alter-do-Chão, Pará (Brazil). Mist-net captures and visual counts were used to assess species richness and bird abundance pre- and post-fire in an approximately 20 ha area. Visual counts along transects were used to survey birds in an approximately 2000 ha area in a nearby area. Results using the same method of ordination analysis (multidimensional scaling) showed significant effects of fire in the 20 ha and 2000 ha areas and strongly suggest direct effects on bird community composition. However, the effects were different at different spatial scales and/or in different years, indicating that the effects of fire vary spatially and/or temporally. Bird community composition pre-fire was significantly different from that found post-fire. Using multiple regression analysis it was found that the numbers of burned and unburned trees were not significantly related to either bird species richness or bird abundance. Two months after the fire, neither bird species richness nor bird abundance was significantly related to the number of flowering trees (Lafoensia pacari) or fruiting trees (Byrsonima crassifolia). Since fire is an annual event in Alter-do-Chão and is becoming frequent in the entire Amazon, bird community composition in affected areas could be constantly changing in time and space.


The Condor ◽  
2007 ◽  
Vol 109 (4) ◽  
pp. 943-948
Author(s):  
Wayne E. Thogmartin ◽  
Brian R. Gray ◽  
Maureen Gallagher ◽  
Neal Young ◽  
Jason J. Rohweder ◽  
...  

Abstract Avian point counts for population monitoring are often collected over a short timespan (e.g., 3–5 years). We examined whether power was adequate (power ≥0.80) in short-duration studies to warrant the calculation of trend estimates. We modeled power to detect trends in abundance indices of eight bird species occurring across three floodplain habitats (wet prairie, early successional forest, and mature forest) as a function of trend magnitude, sample size, and species-specific sampling and among-year variance components. Point counts (5 min) were collected from 365 locations distributed among 10 study sites along the lower Missouri River; counts were collected over the period 2002 to 2004. For all study species, power appeared adequate to detect trends in studies of short duration (three years) at a single site when exponential declines were relatively large in magnitude (more than −5% year−1) and the sample of point counts per year was ≥30. Efforts to monitor avian trends with point counts in small managed lands (i.e., refuges and parks) should recognize this sample size restriction by including point counts from offsite locations as a means of obtaining sufficient numbers of samples per strata. Trends of less than −5% year−1 are not likely to be consistently detected for most species over the short term, but short-term monitoring may still be useful as the basis for comparisons with future surveys.


Sign in / Sign up

Export Citation Format

Share Document