The life cycle of the aquatic snipe fly Atherix lantha Webb (Diptera Brachycera; Athericidae) in Quebec

1993 ◽  
Vol 71 (8) ◽  
pp. 1530-1533 ◽  
Author(s):  
M. Lauzon ◽  
P. P. Harper

The aquatic snipe fly Atherix lantha Webb in the rivière de l'Achigan in the Laurentian foothills of Quebec has a univoltine life cycle. The eggs were laid in great clusters under a small footbridge spanning the river and some 61 000 dead females were observed attached to their egg masses. Upon hatching, the hatchlings fell into the water. There were five larval instars. First-instar larvae appeared in June. Growth was rapid and by September most of the population had reached the fourth instar. Overwintering occurred mainly in the fifth and final instar. On the basis of measurements of the second antennal segment of the larvae, it was concluded that growth follows Dyar's law of constant growth rate between instars (growth rate = 1.31), except between the first two instars, where the growth rate was higher (1.41). In May the full-grown larvae left the river to pupate on the banks and adults were on the wing from mid-May to late June.

2021 ◽  
Vol 28 (3) ◽  
pp. e18793
Author(s):  
Jônatas Lima ◽  
Railene Almeida ◽  
Edson Guilherme

We present new aspects of breeding biology of Gray-fronted Dove Leptotila rufaxilla, from five nests found between 2012 and 2014 in a lowland forest fragment in southwestern Brazil. The nests simple/platform shape were built at a mean height of 1.90 m above ground. The clutch size was two eggs white and elliptic, incubated for 15 days (based on three nests). We recorded predation in two nests still in incubation phase. Minimum hatch weight of nestlings was 10 g and young fledged with a mean mass of 56 g. The constant growth rate (K) of nestlings was 0.40 with a growth asymptote of 60.7 g. Daily survival rate, Mayfield and apparent nesting success in the incubation period was 90, 20 and 56%, respectively, while in the nestling period were all 100%. Our data and the contribution of citizen science showed that L. rufaxilla breeds over the year, mainly in the rainy season, both in southwestern Amazonia and in other regions of occurrence.


2020 ◽  
Vol 17 (2) ◽  
pp. 104
Author(s):  
Dosma Ulina Simbolon ◽  
Maryani Cyccu Tobing ◽  
Darma Bakti

<p><em>Stenocranus pacificus </em>Kirkaldy (Hemiptera: Delphacidae) is destructive pest on corn plants in South Lampung and it has been reported to cause corn damages in North Sumatra. The  objective of this research was to study some aspects biology of <em>S. pacificus</em> on corn plants in screenhouse. The research was conducted by observing the biology of <em>S. pacificus</em> that was reared on corn plants in screenhouse.<em> </em>The results showed that life cycle of <em>S. pacificus </em>was 38–47 (41,60 ± 3,19) days: egg was 9–11 (10,20 ± 0,79) days, the first instar nymph was 3–4 (3,70 ± 0,48) days, the second instar nymph was 3–4 (3,90 ± 0,32) days, the third instar nymph was 3–4 (3,70 ± 0,48) days, the fourth instar nymph was 3–4 (3,80 ± 0,42) days, and the fifth instar nymph was 3–4 (3,60 ± 0,52) days. Age of female was 13–17 (15,30 ± 1,34) days. It was longer than age of male which was 8–12 (10,10 ± 1,20) days. Female could produce 181–214 (197,60 ± 11,64) eggs during its life. The sex ratio was 1:1,98.</p>


2012 ◽  
Vol 1454 ◽  
pp. 161-166 ◽  
Author(s):  
Nobuyuki Iwata ◽  
Yuta Watabe ◽  
Yoshito Tsuchiya ◽  
Kento. Norota ◽  
Takuya Hashimoto ◽  
...  

ABSTRACTThe LaFeO3 and CaFeOX layers are grown using highly dense target prepared by Pechini method, with which accurate growth rate is achieved. Since the LaFeO3demonstrates the obvious RHEED oscillation until the end of growth, constant growth rate, and the step-terraces structure, the LFO is employed as a buffer and/or reference layer to determine the required pulses to deposit the thickness we desire in the superlattice. Superlattices show the clear satellite peaks and Laue oscillation in the XRD spectra as well as the oscillations caused by the film thickness with a flat surface and superstructure with a flat interface in the x-ray reflection spectrum. The streaky RHEED patterns and step-terraces surface are consistent with the results of spectra using x-ray.


1951 ◽  
Vol 42 (2) ◽  
pp. 355-370 ◽  
Author(s):  
J. Muspratt

Living specimens of Megarhinus brevipalpis were transported from southern Natal to Johannesburg to establish an insectary-bred colony. The natural habitat of these predatory mosquitos consisted of small isolated patches of sub-tropical forest, in which the rainfall is 40–50 ins. (102–127 cm.) with a mean winter temperature of 64°F. (17·7°C.) and an annual range of 27°–33°F. (15°–18°C). The breeding places were leaf axils of Strelitzia nicolai (a plant resembling a wild banana), small rot holes in trees and larger ones in Strelitzia stumps. The larvae were collected from leaf axils with an apparatus consisting of a rubber bulb to which were attached lengths of glass and rubber tubing.The insectary was a room 9 ft.×8 ft. 6 ins. and 9 ft. high which was kept at tropical heat and humidity. Mating of the adults was observed, copulation being effected while at rest or in flight. Oviposition was usually accomplished in flight but also while at rest on the surface of the water. In the summer time two females, which were tested, laid about 85 eggs each during the month following emergence from the pupa, six or seven days elapsing after emergence before the first oviposition. In the middle of the winter, oviposition (with later generations) became very irregular in spite of the temperature and humidity remaining constant. The adults, which were comparable to those of the natural habitat, were fed on sugar solution, honey and fruit juice. One bred out as a gynandromorph.When given an abundant supply of larvae of laboratory bred Aëdes aegypti, the life-cycle of M. brevipalpis was normally : egg (incubation), less than two days ; larva, 11–20 days (average 14·5 days) ; pupa, five days. This does not include a small number of exceptional cases in which the life as a fully grown larva was abnormally prolonged (in one case nearly four months) for reasons which are not absolutely clear. The larvae killed from 100 to 200 or more Aëdes larvae during the normal larval life, but many of these were not eaten when the brevipalpis were in the late fourth instar. By a special technique they were also induced to eat dead tissues including minced pork brawn, minced maggots and minced flies. Except for the latter these were not satisfactory foods although there was slow development.Fourth-instar larvae were kept out of water for three to four weeks (without food), in a damp atmosphere, and afterwards when fed most of them developed normally, but pupation was sometimes suspended for a considerable time. They have been sent by post (out of water) in tubes with damp cotton wool and filter paper.The egg differed from that of other Megarhinus species in having a crown of projections at one end with a cup-like structure in the centre. The exochorion had roughly hexagonal cells but without numerous tubercles as in other species.First-instar larvae remained in the egg-shell after hatching when the eggs-were out of water but on a damp surface and in a saturated atmosphere. They survived like this for up to six days or about the same time as the larvae survived in tap water if there was no food. When liberated in water the head of the first-instar larva was comparatively small with the mouth parts folded in. Within two hours of liberation in water the head enlarged considerably and the mouth parts came into position ; the larva was then ready to catch its Culicine prey. When in water containing dead leaves, these larvae survived from a few days to over four weeks and some grew to the third instar without any Culicine food.Cannibalism was investigated. Fourth-instar larvae did not attack each other readily ; they devoured smaller larvae of their own species and small to medium size larvae resorted to cannibalism, particularly in the absence of Culicine prey. There was evidence that fourth-instar Aëdes aegypti occasionally ate first-instar Megarhinus.The discussion traces attempts which have been made in certain Pacific islands, notably Hawaii and Fiji, to use Megarhines for biological control of disease-carrying mosquitos. M. brevipalpis has a shorter life-cycle than the species introduced into these islands and the conclusion reached is that laboratory breeding, to enable large numbers to be released in certain areas, would be a suitable adjunct to a programme of general control, in this part of the world. Airmail consignments of larvae are being sent to Hawaii with the object of starting a laboratory colony there.


1976 ◽  
Vol 54 (2) ◽  
pp. 266-284 ◽  
Author(s):  
G. Pritchard

Collections of all stages of the crane fly, Tipula sacra have been made over a period of years from a series of abandoned beaver ponds in the Kananaskis Valley, Alberta. The growth of larvae was followed by head-capsule measurements and weights. Eggs hatch within a month; first-instar larvae grow rapidly and enter the second instar after a few weeks. The second instar may last for 3 months and the third instar usually lasts for 6 months, including the first winter. Most larvae spend almost a full year in the fourth instar and overwinter for a second time. However, there was much variation in growth rate within the population. Adult emergence curves were consistent in form in 4 years. Each spanned a period of just over 2 months, although individual adults lived for only a few days. These curves snowed two peaks, the second of which contained 15–20% of the year's emergents. These two groups may represent different cohorts that have grown at different rates, suggesting that the life history may be semivoltine or univoltine. The sex ratio changes from about 1:1 in the third instar to 2:1 in favor of males in the late fourth instar, pupa, and adult.


Cell Reports ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 705-714 ◽  
Author(s):  
Nikolai Slavov ◽  
Bogdan A. Budnik ◽  
David Schwab ◽  
Edoardo M. Airoldi ◽  
Alexander van Oudenaarden

2015 ◽  
Author(s):  
bahram houchmandzadeh

Abstract The Luria-Delbrück experiment is a cornerstone of evolutionary theory, demonstrating the randomness of mutations before selection. The distribution of the number of mutants in this experiment has been the subject of intense investigation during the last 70 years. Despite this considerable effort, most of the results have been obtained under the assumption of constant growth rate, which is far from the experimental condition. We derive here the properties of this distribution for arbitrary growth function, for both the deterministic and stochastic growth of the mutants. The derivation we propose is surprisingly simple and versatile, allowing many generalizations to be taken easily into account.


2016 ◽  
Author(s):  
Cesar Augusto Vargas-Garcia ◽  
Abhyudai Singh

A ubiquitous feature of all living cells is their growth over time followed by division into two daughter cells. How a population of genetically identical cells maintains size homeostasis, i.e., a narrow distribution of cell size, is an intriguing fundamental problem. We model size using a stochastic hybrid system, where a cell grows exponentially over time and probabilistic division events are triggered at discrete time intervals. Moreover, whenever these events occur, size is randomly partitioned among daughter cells. We first consider a scenario, where a timer (i.e., cell-cycle clock) that measures the time since the last division event regulates cellular growth and the rate of cell division. Analysis reveals that such a timer-driven system cannot achieve size homeostasis, in the sense that, the cell-to-cell size variation grows unboundedly with time. To explore biologically meaningful mechanisms for controlling size we consider three different classes of models: i) a size-dependent growth rate and timer-dependent division rate; ii) a constant growth rate and size-dependent division rate and iii) a constant growth rate and division rate that depends both on the cell size and timer. We show that each of these strategies can potentially achieve bounded intercellular size variation, and derive closed-form expressions for this variation in terms of underlying model parameters. Finally, we discuss how different organisms have adopted the above strategies for maintaining cell size homeostasis.


Sign in / Sign up

Export Citation Format

Share Document