Scale effects in the kinematics and dynamics of swimming leeches

1998 ◽  
Vol 76 (10) ◽  
pp. 1869-1877 ◽  
Author(s):  
Christopher E Jordan

Slender-bodied organisms swimming with whole-body undulations exhibit what appears to be a high degree of kinematic parameter conservation, which is independent of body size. However, organisms of very different sizes swim in fundamentally different physical realms, owing to the relative scaling of viscous and inertial fluid stresses as a function of size and speed. In light of the size-dependent fluid forces, the kinematic constancy suggests three hypotheses: (1) swimming organisms adopt a single "ideal" swimming mode requiring the modification of muscle forces or motor patterns through ontogeny, (2) swimming kinematics are determined predominantly by the passive mechanical interaction of the body and the fluid, resulting in a single swimming mode independent of absolute body size, or (3) while undulatory swimming kinematics may be similar between organisms, there are important size-dependent kinematic differences. In this study, I address this issue by examining the swimming kinematics and dynamics of the medicinal leech Hirudo medicinalis L. as a function of body size. Over a 5-fold increase in body length, the relative amplitude of body undulations during swimming did not change; however, swimming speed, propulsive wave speed, and propulsive wave frequency all decreased, while propulsive wave number increased slightly, strongly supporting hypothesis 2. To determine the source of the observed size-dependent swimming kinematics, I manipulated the dynamic viscosity of the organism's fluid environment to alter the constraints placed on swimming behavior by the physical surroundings. In the elevated-viscosity treatment, all kinematic parameters changed in the opposite direction to that predicted by hypothesis 2, rejecting both the idea that swimming kinematics are simply determined by passive mechanical interactions and that leeches have a target swimming mode under active control.

2015 ◽  
Vol 93 (3) ◽  
pp. 213-223 ◽  
Author(s):  
J.L. Lim ◽  
T.M. Winegard

Anguilliform mode swimmers pass waves of lateral bending down their elongate bodies to propel forward. Hagfishes (Myxinidae) are classified as anguilliform swimmers, but their unique habits and reduced morphology—including a flexible body lacking a vertebral column—have the potential to translate into unique swimming behaviour within this broad classification. Their roles as active scavengers and hunters can require considerable bouts of swimming, yet quantitative data on hagfish locomotion are limited. Here, we aim to provide a more complete mechanistic understanding of hagfish swimming by quantifying whole-body kinematics of steady swimming in Pacific hagfish (Eptatretus stoutii (Lockington, 1878)) and Atlantic hagfish (Myxine glutinosa L., 1758), species from the two main lineages of Myxinidae. We analyzed high-speed video of hagfishes swimming at voluntary swim speeds and found that both species swim using high-amplitude undulatory waves. Swim speed is generally frequency-modulated, but patterns in wave speed, wavelength, and amplitude along the body and across swim speeds are variable, implying versatile mechanisms for the control of swim speed in these highly flexible fishes. We propose mechanistic explanations for this kinematic variability and compare hagfish with other elongate swimmers, demonstrating that the hagfish’s rich locomotory repertoire adds variety to the already diverse set of locomotory kinematics found in anguilliform swimmers.


2019 ◽  
Author(s):  
Matteo Rizzuto ◽  
Shawn J. Leroux ◽  
Eric Vander Wal ◽  
Yolanda F. Wiersma ◽  
Travis R. Heckford ◽  
...  

AbstractIntraspecific variability in ecological traits is widespread in nature. Recent evidence, mostly from aquatic ecosystems, shows individuals differing at the most fundamental level, that of their chemical composition. Age, sex, or body size may be key drivers of intraspecific variability in the body concentrations of carbon (C), nitrogen (N), and phosphorus (P). However, we still have a rudimentary understanding of the patterns and drivers of intraspecific variability in chemical composition of terrestrial consumers, particularly vertebrates.Here, we investigate the whole-body chemical composition of snowshoe hare Lepus americanus, providing one of the few studies of patterns of stoichiometric variability and its potential drivers for a terrestrial vertebrate. Based on snowshoe hare ecology, we expected higher P and N concentrations in females, as well as in larger and older individuals.We obtained whole-body C, N, and P concentrations and C:N, C:P, N:P ratios from a sample of 50 snowshoe hares. We then used general linear models to test for evidence of a relationship between age, sex, or body size and stoichiometric variability in hares.We found considerable variation in the C, N, and P concentrations and elemental ratios within our sample. Contrary to our predictions, we found evidence of N content decreasing with age. As expected, we found evidence of P content increasing with body size. As well, we found no support for a relationship between sex and N or P content, nor for variability in C content and any of our predictor variables.Despite finding considerable stoichiometric variability in our sample, we found no substantial support for age, sex, or body size to relate to this variation. The weak relationship between body N concentration and age may suggest varying nutritional requirements of individuals at different ages. Conversely, P’s weak relationship to body size appears in line with recent evidence of the potential importance of P in terrestrial systems. Snowshoe hares are a keystone herbivore in the boreal forest of North America. The substantial stoichiometric variability we find in our sample could have important implications for nutrient dynamics in both boreal and adjacent ecosystems.


Development ◽  
1981 ◽  
Vol 65 (Supplement) ◽  
pp. 103-128
Author(s):  
P. P. L. Tam

Somitogenesis in the mouse embryo commences with the generation of presumptive somitic mesoderm at the primitive streak and in the tail-bud mesenchyme. The presumptive somitic mesoderm is then organized into somite primordia in the presomitic mesoderm. These primordia undergo morphogenesis leading to the segmentation of somites at the cranial end of the presomitic mesoderm. Somite sizes at the time of segmentation vary according to the position of the somite in the body axis: the size of lumbar and sacral somites is nearly twice that of upper trunk somites and of tail somites. The size of the presomitic mesoderm, which is governed by the balance between the addition of cells at the caudal end and the removal of somites at the cranial end, changes during embryonic development. Somitogenesis is disturbed during the compensatory growth of mouse embryos which have suffered a drastic size reduction at the primitive-streak and early-organogenesis stages. The formation of somites is retarded and the upper trunk somites are formed at a smaller size. The embryo also follows an entirely different growth profile, but a normal body size is restored by the early foetal stage. The somite number is regulated to normal and this is brought about by an altered rate of somite formation and the adjustment of somite size in proportion to the whole body size. It is proposed that axis formation and somitogenesis are related morphogenetic processes and that embryonic growth controls the kinetics of somitogenesis, namely by regulating the number of cells allocated to each somite and the rate of somite formation.


2018 ◽  
Author(s):  
Jasmijn Hillaert ◽  
Thomas Hovestadt ◽  
Martijn L. Vandegehuchte ◽  
Dries Bonte

AbstractBody size is a fundamental trait known to allometrically scale with metabolic rate, and therefore a key determinant of individual development, life history and consequently fitness. In spatially structured environments, movement is an equally important driver of fitness. Because movement is tightly coupled with body size, we expect habitat fragmentation to induce a strong selection pressure on size variation across and within species. Changes in body size distributions are then, in turn, expected to alter food web dynamics. However, no consensus has been reached on how spatial isolation and resource growth affect body size distributions.Our aim was to investigate how these two factors shape the body size distribution of consumers under scenarios of size-dependent and -independent consumer movement by applying a mechanistic, individual-based resource-consumer model. The outcome was then linked to important ecosystem traits such as resource abundance and stability. Finally, we determined those factors that explain most variation in size distributions.We demonstrate that decreasing connectivity and resource growth select for communities (or populations) consisting of larger species (or individuals) due to strong selection for the ability to move over longer distances. When including size-dependent movement, moderate levels of connectivity result in increases in local size diversity. Due to this elevated functional diversity, resource uptake is optimized at the metapopulation or metacommunity level. At these intermediate levels of connectivity, size-dependent movement explains most of the observed variation in size distributions. Interestingly, local and spatial stability of consumer biomass are lowest when isolation and resource productivity are high. Finally, we highlight that size-dependent movement is of vital importance for the survival of populations within highly fragmented landscapes. Our results demonstrate that considering size-dependent movement and resource growth is essential to understand patterns of size distributions at the population or community level and the resulting metapopulation or metacommunity dynamics.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e65667 ◽  
Author(s):  
Jean-François Ouellet ◽  
Cécile Vanpé ◽  
Magella Guillemette

2015 ◽  
Vol 282 (1815) ◽  
pp. 20151346 ◽  
Author(s):  
Erik A. Martens ◽  
Navish Wadhwa ◽  
Nis S. Jacobsen ◽  
Christian Lindemann ◽  
Ken H. Andersen ◽  
...  

Survival in aquatic environments requires organisms to have effective means of collecting information from their surroundings through various sensing strategies. In this study, we explore how sensing mode and range depend on body size. We find a hierarchy of sensing modes determined by body size. With increasing body size, a larger battery of modes becomes available (chemosensing, mechanosensing, vision, hearing and echolocation, in that order) while the sensing range also increases. This size-dependent hierarchy and the transitions between primary sensory modes are explained on the grounds of limiting factors set by physiology and the physical laws governing signal generation, transmission and reception. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in literature. The treatise of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life.


Author(s):  
Aashish Chandra Gupta ◽  
Constance A. Owens ◽  
Suman Shrestha ◽  
Choonsik Lee ◽  
Susan A. Smith ◽  
...  

Abstract Purpose: Radiation epidemiology studies of childhood cancer survivors treated in the pre-computed tomography (CT) era reconstruct the patients’ treatment fields on computational phantoms. For such studies, the phantoms are commonly scaled to age at the time of radiotherapy treatment because age is the generally available anthropometric parameter. Several reference size phantoms are used in such studies, but reference size phantoms are only available at discrete ages (e.g.: newborn, 1, 5, 10, 15, and Adult). When such phantoms are used for RT dose reconstructions, the nearest discrete-aged phantom is selected to represent a survivor of a specific age. In this work, we (1) conducted a feasibility study to scale reference size phantoms at discrete ages to various other ages, and (2) evaluated the dosimetric impact of using exact age-scaled phantoms as opposed to nearest age-matched phantoms at discrete ages. Methods: We have adopted the University of Florida/National Cancer Institute (UF/NCI) computational phantom library for our studies. For the feasibility study, eight male and female reference size UF/NCI phantoms (5, 10, 15, and 35 years) were downscaled to fourteen different ages which included next nearest available lower discrete ages (1, 5, 10 and 15 years) and the median ages at the time of RT for Wilms’ tumor (3.9 years), craniospinal (8.0 years), and all survivors (9.1 years old) in the Childhood Cancer Survivor Study (CCSS) expansion cohort treated with RT. The downscaling was performed using our in-house age scaling functions (ASFs). To geometrically validate the scaling, Dice similarity coefficient (DSC), mean distance to agreement (MDA), and Euclidean distance (ED) were calculated between the scaled and ground-truth discrete-aged phantom (unscaled UF/NCI) for whole-body, brain, heart, liver, pancreas, and kidneys. Additionally, heights of the scaled phantoms were compared with ground-truth phantoms’ height, and the Centers for Disease Control and Prevention (CDC) reported 50th percentile height. Scaled organ masses were compared with ground-truth organ masses. For the dosimetric assessment, one reference size phantom and seventeen body-size dependent 5-year-old phantoms (9 male and 8 female) of varying body mass indices (BMI) were downscaled to 3.9-year-old dimensions for two different radiation dose studies. For the first study, we simulated a 6 MV photon right-sided flank field RT plan on a reference size 5-year-old and 3.9-year-old (both of healthy BMI), keeping the field size the same in both cases. Percent of volume receiving dose ≥ 15 Gy (V15) and the mean dose were calculated for the pancreas, liver, and stomach. For the second study, the same treatment plan, but with patient anatomy-dependent field sizes, was simulated on seventeen body-size dependent 5- and 3.9-year-old phantoms with varying BMIs. V15, mean dose, and minimum dose received by 1% of the volume (D1), and by 95% of the volume (D95) were calculated for pancreas, liver, stomach, left kidney (contralateral), right kidney, right and left colons, gallbladder, thoracic vertebrae, and lumbar vertebrae. A non-parametric Wilcoxon rank-sum test was performed to determine if the dose to organs of exact age-scaled and nearest age-matched phantoms were significantly different (p<0.05). Results: In the feasibility study, the best DSCs were obtained for the brain (median: 0.86) and whole-body (median: 0.91) while kidneys (median: 0.58) and pancreas (median: 0.32) showed poorer agreement. In the case of MDA and ED, whole-body, brain, and kidneys showed tighter distribution and lower median values as compared to other organs. For height comparison, the overall agreement was within 2.8% (3.9cm) and 3.0% (3.2cm) of ground-truth UF/NCI and CDC reported 50th percentile heights, respectively. For mass comparison, the maximum percent and absolute differences between the scaled and ground-truth organ masses were within 31.3% (29.8g) and 211.8g (16.4%), respectively (across all ages). In the first dosimetric study, absolute difference up to 6% and 1.3 Gy was found for V15 and mean dose, respectively. In the second dosimetric study, V15 and mean dose were significantly different (p<0.05) for all studied organs except the fully in-beam organs. D1 and D95 were not significantly different for most organs (p>0.05). Conclusion: We have successfully evaluated our ASFs by scaling UF/NCI computational phantoms from one age to another age, which demonstrates the feasibility of scaling any CT-based anatomy. We have found that dose to organs of exact age-scaled and nearest aged-matched phantoms are significantly different (p<0.05) which indicates that using the exact age-scaled phantoms for retrospective dosimetric studies is a bette


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
N. Pengki Devi ◽  
R.K. Gambhir

The new species is characterized by possessing medium body size, 4 rows of 9 hooks each, a faded fork like structure present in the proboscis, a collar of spine consisting of 15 rows of 8- 10 spines each, cylindrical testes, poorly develoved uterine bell. The eggs are present in the middle portion of the body and spines are present only in one third portion of the whole body length and the rest portion is devoid of spine. The present specimen deals with the description of Pallisentis heingangyensis n. sp. recovered from the intestine of Channa striatus from Heingang river, Imphal East, Manipur.


2010 ◽  
Vol 88 (8) ◽  
pp. 774-780 ◽  
Author(s):  
K. L. Foster ◽  
T. E. Higham

Aquatic flight is the primary locomotor mode for many animals, including penguins and other diving birds, turtles, and fishes, where labriform and rajiform swimming have been the focus of much interest. However, despite its interesting phylogenetic placement, little is known about the aquatic flight of the sister lineage to the elasmobranchs, the chimaerids. This study investigates the pectoral fin morphology of the spotted ratfish ( Hydrolagus colliei (Lay and Bennett, 1839)) as a possible factor underlying the kinematics of their steady swimming by comparing muscle mass, distribution, and abductor to adductor ratio with those of a closely related shark ( Squalus acanthias L., 1758). Despite fundamental differences in swimming mode, abductor to adductor muscle ratio did not differ between species (P = 0.49). However, the muscle ratio in the spotted ratfish was similar to the range determined in other flapping labriform swimmers. Ratfish had larger, distally placed pectoral fin muscles relative to body size than dogfish (P < 0.0001) possibly aiding in fine control. Stroke amplitude remained constant across body size (P = 0.26) and relative swimming speed (P = 0.23) in the ratfish, whereas the downstroke was significantly faster than the upstroke (P = 0.006). The similar muscle ratio, despite differences in stroke phases, may be explained by physiological or in vivo recruitment differences between abductors and adductors in the ratfish.


Sign in / Sign up

Export Citation Format

Share Document