How to build a pectoral fin: functional morphology and steady swimming kinematics of the spotted ratfish (Hydrolagus colliei)

2010 ◽  
Vol 88 (8) ◽  
pp. 774-780 ◽  
Author(s):  
K. L. Foster ◽  
T. E. Higham

Aquatic flight is the primary locomotor mode for many animals, including penguins and other diving birds, turtles, and fishes, where labriform and rajiform swimming have been the focus of much interest. However, despite its interesting phylogenetic placement, little is known about the aquatic flight of the sister lineage to the elasmobranchs, the chimaerids. This study investigates the pectoral fin morphology of the spotted ratfish ( Hydrolagus colliei (Lay and Bennett, 1839)) as a possible factor underlying the kinematics of their steady swimming by comparing muscle mass, distribution, and abductor to adductor ratio with those of a closely related shark ( Squalus acanthias L., 1758). Despite fundamental differences in swimming mode, abductor to adductor muscle ratio did not differ between species (P = 0.49). However, the muscle ratio in the spotted ratfish was similar to the range determined in other flapping labriform swimmers. Ratfish had larger, distally placed pectoral fin muscles relative to body size than dogfish (P < 0.0001) possibly aiding in fine control. Stroke amplitude remained constant across body size (P = 0.26) and relative swimming speed (P = 0.23) in the ratfish, whereas the downstroke was significantly faster than the upstroke (P = 0.006). The similar muscle ratio, despite differences in stroke phases, may be explained by physiological or in vivo recruitment differences between abductors and adductors in the ratfish.

2011 ◽  
Vol 366 (1570) ◽  
pp. 1507-1515 ◽  
Author(s):  
Douglas A. Syme ◽  
Robert E. Shadwick

Fishes with internalized and endothermic red muscles (i.e. tunas and lamnid sharks) are known for a stiff-bodied form of undulatory swimming, based on unique muscle–tendon architecture that limits lateral undulation to the tail region even though the red muscle is shifted anteriorly. A strong convergence between lamnid sharks and tunas in these features suggests that thunniform swimming might be evolutionarily tied to this specialization of red muscle, but recent observations on the common thresher shark ( Alopias vulpinus ) do not support this view. Here, we review the fundamental features of the locomotor systems in lamnids and tunas, and present data on in vivo muscle function and swimming mechanics in thresher sharks. These results suggest that the presence of endothermic and internalized red muscles alone in a fish does not predict or constrain the swimming mode to be thunniform and, indeed, that the benefits of this type of muscle may vary greatly as a consequence of body size.


1998 ◽  
Vol 76 (10) ◽  
pp. 1869-1877 ◽  
Author(s):  
Christopher E Jordan

Slender-bodied organisms swimming with whole-body undulations exhibit what appears to be a high degree of kinematic parameter conservation, which is independent of body size. However, organisms of very different sizes swim in fundamentally different physical realms, owing to the relative scaling of viscous and inertial fluid stresses as a function of size and speed. In light of the size-dependent fluid forces, the kinematic constancy suggests three hypotheses: (1) swimming organisms adopt a single "ideal" swimming mode requiring the modification of muscle forces or motor patterns through ontogeny, (2) swimming kinematics are determined predominantly by the passive mechanical interaction of the body and the fluid, resulting in a single swimming mode independent of absolute body size, or (3) while undulatory swimming kinematics may be similar between organisms, there are important size-dependent kinematic differences. In this study, I address this issue by examining the swimming kinematics and dynamics of the medicinal leech Hirudo medicinalis L. as a function of body size. Over a 5-fold increase in body length, the relative amplitude of body undulations during swimming did not change; however, swimming speed, propulsive wave speed, and propulsive wave frequency all decreased, while propulsive wave number increased slightly, strongly supporting hypothesis 2. To determine the source of the observed size-dependent swimming kinematics, I manipulated the dynamic viscosity of the organism's fluid environment to alter the constraints placed on swimming behavior by the physical surroundings. In the elevated-viscosity treatment, all kinematic parameters changed in the opposite direction to that predicted by hypothesis 2, rejecting both the idea that swimming kinematics are simply determined by passive mechanical interactions and that leeches have a target swimming mode under active control.


Zootaxa ◽  
2017 ◽  
Vol 4244 (2) ◽  
pp. 207 ◽  
Author(s):  
ÍTHALO DA SILVA CASTRO ◽  
WOLMAR BENJAMIN WOSIACKI

A new species of Ituglanis is described from rio Iratapuru, near the rio Jari, Amapá, Brazil. The new species is distinguished from all congeners by the reduced number of post-Weberian apparatus vertebrae (36 or 37); the low number of paired ribs (2); the low number of interopercular odontodes (12–15); the number of branchiostegal rays (7 or 8); the presence of elongated fontanel in parieto-supraoccipital; the pectoral-fin rays (i,5); head length (18.9–25.0); and the presence of pores supraorbital s1, infraorbitals i1 and i3 of the laterosensory system. The new taxon has a reduced body size and fully ossified skeleton, but does not display a large number of paedomorphic traits compared to congeners. Comments about taxonomy and intrageneric comparisons are made, and paedomorphic in Ituglanis is discussed. Thoughts about conservation of the new species are presented. 


2020 ◽  
Author(s):  
Heiko Stark ◽  
Martin S. Fischer ◽  
Alexander Hunt ◽  
Fletcher Young ◽  
Roger Quinn ◽  
...  

AbstractDogs are an interesting object of investigation because of the wide range of body size, body mass, and physique. In the last several years, the number of clinical and biomechanical studies on dog locomotion has increased. However, the relationship between body structure and joint load during locomotion, as well as between joint load and degenerative diseases of the locomotor system (e.g. dysplasia), are not sufficiently understood. In vivo measurements/records of joint forces and loads or deep/small muscles are complex, invasive, and sometimes ethically questionable. The use of detailed musculoskeletal models may help in filling that knowledge gap. We describe here the methods we used to create a detailed musculoskeletal model with 84 degrees of freedom and 134 muscles. Our model has three key-features: Three-dimensionality, scalability, and modularity. We tested the validity of the model by identifying forelimb muscle synergies of a beagle at walk. We used inverse dynamics and static optimization to estimate muscle activations based on experimental data. We identified three muscle synergy groups by using hierarchical clustering. Predicted activation patterns exhibited good agreement with experimental data for most of the forelimb muscles. We expect that our model will speed up the analysis of how body size, physique, agility, and disease influence joint neuronal control and loading in dog locomotion.


1996 ◽  
Vol 199 (10) ◽  
pp. 2243-2252 ◽  
Author(s):  
E Drucker ◽  
J Jensen

In this study, we report the first allometric equations relating gait parameters and swimming speed to body size for fish employing pectoral fin locomotion. Comparisons of locomotor kinematics and performance among striped surfperch (Teleostei: Embiotocidae) are made at the pectoral&shy;caudal gait transition speed (Up-c). Up-c is considered to elicit physiologically equivalent levels of exercise in animals varying over 100-fold in body mass (Mb) by virtue of dynamically similar pectoral fin movements (constant duty factor, length-specific stride length and fin-beat amplitude) and size-independent propulsive efficiency. At Up-c, pectoral fin-beat frequency scales in proportion to Mb-0.12&plusmn;0.03, a size-dependence consistent with that observed for stride frequency in fishes swimming by axial undulatory propulsion and in many running tetrapods. It is proposed that the similarity in the scaling of frequency in these vertebrate groups reflects an underlying similarity in the allometry of the maximal velocity of muscle shortening. Absolute Up-c (m s-1) generally increases with body size, but the fastest speeds are not exhibited by the largest animals. A pattern of declining performance in fish 23 cm in standard length and longer may be related to their disproportionately small fin areas and aspect ratios. The pronounced negative allometry of Up-c expressed as standard body lengths per second indicates that a given length-specific speed does not induce comparable levels of activity in large and small fish. Thus, normalization of swimming speed to body length may not be a sufficient correction for kinematic comparisons across size.


1996 ◽  
Vol 199 (10) ◽  
pp. 2235-2242 ◽  
Author(s):  
E Drucker ◽  
J Jensen

Swimming trials at increasing velocity were used to determine the effects of steady swimming speed on pectoral fin kinematics for an ontogenetic series of striped surfperch Embiotoca lateralis, ranging from 6 to 23 cm in standard length (SL). The fin stroke cycle consisted of a propulsive period, the duration of fin abduction and adduction, and a 'refractory' period, during which the fin remained adducted against the body. Pectoral fin-beat frequency (fp) measured as the inverse of the entire stride period, as in past studies, increased curvilinearly with speed. Frequency, calculated as the reciprocal of the propulsive period alone, increased linearly with speed, as shown previously for tail-beat frequency of fishes employing axial undulation. Fin-beat amplitude, measured as the vertical excursion of the pectoral fin tip during abduction, increased over a limited range of low speeds before reaching a plateau at 0.35&shy;0.40 SL. Pectoral fin locomotion was supplemented by intermittent caudal fin undulation as swimming speed increased. At the pectoral&shy;caudal gait transition speed (Up-c), frequency and amplitude attained maxima, suggesting that the fin musculature reached a physiological limit. The effects of body size on swimming kinematics differed according to the method used for expressing speed. At a given absolute speed, small fish used higher stride frequencies and increased frequency at a faster rate than large fish. In contrast, the relationship between fp and length-specific speed (SL s-1) had a greater slope for large fish and crossed that for small fish at high speeds. We recommend that comparisons across size be made using speeds expressed as a percentage of Up-c, at which kinematic variables influencing thrust are size-independent.


1997 ◽  
Vol 200 (13) ◽  
pp. 1881-1893 ◽  
Author(s):  
M Westneat ◽  
J Walker

Labriform locomotion is a widespread swimming mechanism in fishes during which propulsive forces are generated by oscillating the pectoral fins. We examined the activity of the six major muscles that power the pectoral fin of the bird wrasse Gomphosus varius (Labridae: Perciformes). The muscles studied included the fin abductors (arrector ventralis, abductor superficialis and abductor profundus) and the fin adductors (arrector dorsalis, adductor superficialis and adductor profundus). Our goals were to determine the pattern of muscle activity that drives the fins in abduction and adduction cycles during pectoral fin locomotion, to examine changes in the timing and amplitude of electromyographic (EMG) patterns with increases in swimming speed and to correlate EMG patterns with the kinematics of pectoral fin propulsion. EMG data were recorded from three individuals over a range of swimming speeds from 15 to 70 cm s-1 (1&shy;4.8 TL s-1, where TL is total body length). The basic motor pattern of pectoral propulsion is alternating activity of the antagonist abductor and adductor groups. The downstroke is characterized by activity of the arrector ventralis muscle before the other abductors, whereas the upstroke involves nearly synchronous activity of the three adductors. Most EMG variables (duration, onset time, amplitude and integrated area) showed significant correlations with swimming speeds. However, the timing and duration of muscle activity are relatively constant across speeds when expressed as a fraction of the stride period, which decreases with increased velocity. Synchronous recordings of kinematic data (maximal abduction and adduction) with EMG data revealed that activity in the abductors began after maximal adduction and that activity in the adductors began nearly synchronously with maximal abduction. Thus, the pectoral fin mechanism of G. varius is activated by positive work from both abductor and adductor muscle groups over most of the range of swimming speeds. The adductors produce some negative work only at the highest swimming velocities. We combine information from pectoral fin morphology, swimming kinematics and motor patterns to interpret the musculoskeletal mechanism of pectoral propulsion in labrid fishes.


2006 ◽  
Vol 100 (6) ◽  
pp. 1851-1856 ◽  
Author(s):  
Keith Tolfrey ◽  
Alan Barker ◽  
Jeanette M. Thom ◽  
Christopher I. Morse ◽  
Marco V. Narici ◽  
...  

The aim of this study was to critically examine the influence of body size on maximal oxygen uptake (V̇o2 max) in boys and men using body mass (BM), estimated fat-free mass (FFM), and estimated lower leg muscle volume (Vol) as the separate scaling variables. V̇o2 max and an in vivo measurement of Vol were assessed in 15 boys and 14 men. The FFM was estimated after percentage body fat had been predicted from population-specific skinfold measurements. By using nonlinear allometric modeling, common body size exponents for BM, FFM, and Vol were calculated. The point estimates for the size exponent (95% confidence interval) from the separate allometric models were: BM 0.79 (0.53–1.06), FFM 1.00 (0.78–1.22), and Vol 0.64 (0.40–0.88). For the boys, substantial residual size correlations were observed for V̇o2 max/BM0.79 and V̇o2 max/FFM1.00, indicating that these variables did not correctly partition out the influence of body size. In contrast, scaling by Vol0.64 led to no residual size correlation in boys or men. Scaling by BM is confounded by heterogeneity of body composition and potentially substantial differences in the mass exponent between boys and men. The FFM is precluded as an index of involved musculature because Vol did not represent a constant proportion of FFM [Vol∝FFM1.45 (95% confidence interval, 1.13–1.77)] in the boys (unlike the men). We conclude that Vol, as an indicator of the involved muscle mass, is the most valid allometric denominator for the scaling of V̇o2 max in a sample of boys and men heterogeneous for body size and composition.


1990 ◽  
Vol 259 (2) ◽  
pp. R223-R230 ◽  
Author(s):  
R. L. Marsh

The kinetic properties of muscle that could influence locomotor frequency include rate of activation, rate of cross-bridge "attachment", intrinsic shortening velocity, and rate of deactivation. The latter two mechanisms are examined using examples from high-speed running in lizards and escape swimming in scallops. During running, inertial loading and elastic energy storage probably mitigate the effects of thermal alterations in intrinsic muscle shortening velocity. The result is a rather low thermal dependence of stride frequency over a 15-20 degree C temperature range. However, at lower temperatures, the longer times required for deactivation cause the thermal dependence of frequency to increase greatly. Scallops use a single muscle to swim by jet propulsion. In vivo shortening velocity in these animals also shows a low thermal dependence. As with high-speed running, the mechanics of jet propulsion may limit the effects of thermally induced changes in intrinsic shortening velocity. The largest thermal effect during swimming is on the initial phase of valve opening. The effects of temperature on the rate of deactivation of the adductor muscle could play an important role in limiting reextension of the muscle, which is dependent on elastic energy storage in the hinge ligament. These examples illustrate that the relative importance of various intrinsic contractile properties in controlling locomotor performance depends on the mechanics of the movements.


1997 ◽  
Vol 75 (3) ◽  
pp. 371-375 ◽  
Author(s):  
J.-Y. Cheng ◽  
M. E. DeMont

The in vivo stress–strain and stress – strain rate relationships of the adductor muscle in a swimming scallop (Placopecten magellanicus) were predicted on the basis of detailed measured swimming movements and a recently developed dynamic model that integrates all important mechanical elements in the process. The in vivo behaviour of the muscle was found to be quite different than the in vitro properties measured on isolated muscle fibres, which suggests that in general the latter might not be directly used to predict the in vivo mechanical events.


Sign in / Sign up

Export Citation Format

Share Document