A peak shape model with high-energy tailing for high-resolution alpha-particle spectra

2019 ◽  
Vol 55 (8) ◽  
Author(s):  
Rui Shi ◽  
Xianguo Tuo ◽  
Jianbo Yang ◽  
Yi Cheng ◽  
Honglong Zheng ◽  
...  
Author(s):  
Z. Horita ◽  
D. J. Smith ◽  
M. Furukawa ◽  
M. Nemoto ◽  
R. Z. Valiev ◽  
...  

It is possible to produce metallic materials with submicrometer-grained (SMG) structures by imposing an intense plastic strain under quasi-hydrostatic pressure. Studies using conventional transmission electron microscopy (CTEM) showed that many grain boundaries in the SMG structures appeared diffuse in nature with poorly defined transition zones between individual grains. The implication of the CTEM observations is that the grain boundaries of the SMG structures are in a high energy state, having non-equilibrium character. It is anticipated that high-resolution electron microscopy (HREM) will serve to reveal a precise nature of the grain boundary structure in SMG materials. A recent study on nanocrystalline Ni and Ni3Al showed lattice distortion and dilatations in the vicinity of the grain boundaries. In this study, HREM observations are undertaken to examine the atomic structure of grain boundaries in an SMG Al-based Al-Mg alloy.An Al-3%Mg solid solution alloy was subjected to torsion straining to produce an equiaxed grain structure with an average grain size of ~0.09 μm.


Author(s):  
Klaus-Ruediger Peters

Topographic ultra high resolution can now routinely be established on bulk samples in cold field emission scanning electron microscopy with a second generation of microscopes (FSEM) designed to provide 0.5 nm probe diameters. If such small probes are used for high magnification imaging, topographic contrast is so high that remarkably fine details can be imaged on 2DMSO/osmium-impregnated specimens at ribosome surfaces even without a metal coating. On TCH/osmium-impregnated specimens topographic resolution can be increased further if the SE-I imaging mode is applied. This requires that beam diameter and metal coating thickness be made smaller than the SE range of ~1 nm and background signal contributions be reduced. Subnanometer small probes can be obtained (only) at high accelerating voltages. Subnanometer thin continuous metal films can be produced under the following conditions: self-shadowing effect between metal atoms must be reduced through appropriate deposition techniques and surface mobility of metal atoms must be diminished through high energy sputtering and/or specimen cooling.


2000 ◽  
Vol 639 ◽  
Author(s):  
Philomela Komninou ◽  
Joseph Kioseoglou ◽  
Eirini Sarigiannidou ◽  
George P. Dimitrakopulos ◽  
Thomas Kehagias ◽  
...  

ABSTRACTThe interaction of growth intrinsic stacking faults with inversion domain boundaries in GaN epitaxial layers is studied by high resolution electron microscopy. It is observed that stacking faults may mediate a structural transformation of inversion domain boundaries, from the low energy types, known as IDB boundaries, to the high energy ones, known as Holt-type boundaries. Such interactions may be attributed to the different growth rates of adjacent domains of inverse polarity.


2007 ◽  
Vol 539-543 ◽  
pp. 2353-2358 ◽  
Author(s):  
Ulrich Lienert ◽  
Jonathan Almer ◽  
Bo Jakobsen ◽  
Wolfgang Pantleon ◽  
Henning Friis Poulsen ◽  
...  

The implementation of 3-Dimensional X-Ray Diffraction (3DXRD) Microscopy at the Advanced Photon Source is described. The technique enables the non-destructive structural characterization of polycrystalline bulk materials and is therefore suitable for in situ studies during thermo-mechanical processing. High energy synchrotron radiation and area detectors are employed. First, a forward modeling approach for the reconstruction of grain boundaries from high resolution diffraction images is described. Second, a high resolution reciprocal space mapping technique of individual grains is presented.


Icarus ◽  
2019 ◽  
Vol 319 ◽  
pp. 812-827 ◽  
Author(s):  
R.S. Park ◽  
A.T. Vaughan ◽  
A.S. Konopliv ◽  
A.I. Ermakov ◽  
N. Mastrodemos ◽  
...  

2017 ◽  
Vol 24 (5) ◽  
pp. 053104 ◽  
Author(s):  
R. Tommasini ◽  
C. Bailey ◽  
D. K. Bradley ◽  
M. Bowers ◽  
H. Chen ◽  
...  

2016 ◽  
Vol 34 (1) ◽  
pp. 75-84 ◽  
Author(s):  
V. Pierrard ◽  
G. Lopez Rosson

Abstract. With the energetic particle telescope (EPT) performing with direct electron and proton discrimination on board the ESA satellite PROBA-V, we analyze the high-resolution measurements of the charged particle radiation environment at an altitude of 820 km for the year 2015. On 17 March 2015, a big geomagnetic storm event injected unusual fluxes up to low radial distances in the radiation belts. EPT electron measurements show a deep dropout at L > 4 starting during the main phase of the storm, associated to the penetration of high energy fluxes at L < 2 completely filling the slot region. After 10 days, the formation of a new slot around L = 2.8 for electrons of 500–600 keV separates the outer belt from the belt extending at other longitudes than the South Atlantic Anomaly. Two other major events appeared in January and June 2015, again with injections of electrons in the inner belt, contrary to what was observed in 2013 and 2014. These observations open many perspectives to better understand the source and loss mechanisms, and particularly concerning the formation of three belts.


Sign in / Sign up

Export Citation Format

Share Document