scholarly journals Analytical model of strange star in the low-mass X-ray binary 4U 1820-30

Author(s):  
Mehedi Kalam ◽  
Farook Rahaman ◽  
Sajahan Molla ◽  
Md. Abdul Kayum Jafry ◽  
Sk. Monowar Hossein
Keyword(s):  
X Ray ◽  
2016 ◽  
Vol 361 (10) ◽  
Author(s):  
Sk. Monowar Hossein ◽  
Nur Farhad ◽  
Sajahan Molla ◽  
Mehedi Kalam
Keyword(s):  
X Ray ◽  

2020 ◽  
Vol 633 ◽  
pp. A45 ◽  
Author(s):  
Long Jiang ◽  
Na Wang ◽  
Wen-Cong Chen ◽  
Xiang-Dong Li ◽  
Wei-Min Liu ◽  
...  

According to the recycling model, neutron stars in low-mass X-ray binaries were spun up to millisecond pulsars (MSPs), which indicates that all MSPs in the Galactic plane ought to be harbored in binaries. However, about 20% Galactic field MSPs are found to be solitary. To interpret this problem, we assume that the accreting neutron star in binaries may collapse and become a strange star when it reaches some critical mass limit. Mass loss and a weak kick induced by asymmetric collapse during the phase transition (PT) from neutron star to strange star can result in isolated MSPs. In this work, we use a population-synthesis code to examine the PT model. The simulated results show that a kick velocity of ∼60 km s−1 can produce ∼6 × 103 isolated MSPs and birth rate of ∼6.6 × 10−7 yr−1 in the Galaxy, which is approximately in agreement with predictions from observations. For the purpose of comparisons with future observation, we also give the mass distributions of radio and X-ray binary MSPs, along with the delay time distribution.


2019 ◽  
Vol 19 (2) ◽  
pp. 026
Author(s):  
Sajahan Molla ◽  
Rabiul Islam ◽  
Md. Abdul Kayum Jafry ◽  
Mehedi Kalam

2020 ◽  
Vol 638 ◽  
pp. A52 ◽  
Author(s):  
C. Mordasini

Context. Observations have revealed in the Kepler data a depleted region separating smaller super-Earths from larger sub-Neptunes. This can be explained as an evaporation valley between planets with and without H/He that is caused by atmospheric escape. Aims. We want to analytically derive the valley’s locus and understand how it depends on planetary properties and stellar X-ray and ultraviolet (XUV) luminosity. We also want to derive constraints for planet formation models. Methods. First, we conducted numerical simulations of the evolution of close-in low-mass planets with H/He undergoing escape. We performed parameter studies with grids in core mass and orbital separation, and we varied the postformation H/He mass, the strength of evaporation, and the atmospheric and core composition. Second, we developed an analytical model for the valley locus. Results. We find that the bottom of the valley quantified by the radius of the largest stripped core, Rbare, at a given orbital distance depends only weakly on postformation H/He mass. The reason is that a high initial H/He mass means that more gas needs to evaporate, but also that the planet density is lower, increasing mass loss. Regarding the stellar XUV-luminosity, Rbare is found to scale as LXUV0.135. The same weak dependency applies to the efficiency factor ε of energy-limited evaporation. As found numerically and analytically, Rbare varies a function of orbital period P for a constant ε as P−2pc∕3 ≈ P−0.18, where Mc ∝ Rcpc is the mass-radius relation of solid cores. We note that Rbare is about 1.7 R⊕ at a ten-day orbital period for an Earth-like composition. Conclusions. The numerical results are explained very well with the analytical model where complete evaporation occurs if the temporal integral over the stellar XUV irradiation that is absorbed by the planet is larger than the binding energy of the envelope in the gravitational potential of the core. The weak dependency on the postformation H/He means that the valley does not strongly constrain gas accretion during formation. But the weak dependency on primordial H/He mass, stellar LXUV, and ε could be the reason why the valley is so clearly visible observationally, and why various models find similar results theoretically. At the same time, given the large observed spread of LXUV, the dependency on it is still strong enough to explain why the valley is not completely empty.


2002 ◽  
Vol 17 (14) ◽  
pp. 827-838 ◽  
Author(s):  
R. SHARMA ◽  
S. MUKHERJEE ◽  
MIRA DEY ◽  
JISHNU DEY

We discuss the physical applicability of a model for a class of compact stars, employing Vaidya–Tikekar12 geometry of space–time. It is shown that the model can generate an equation of state (EOS) very similar to the one obtained by earlier workers for SAX J1808.4-3658 (SAX in short), assumed to be a strange star. The stellar configuration, as described by the model, is shown to be stable under radial perturbations. This may explain why the star SAX is known to be very stable compared to other low mass binary X-ray emitters.


1988 ◽  
Vol 102 ◽  
pp. 47-50
Author(s):  
K. Masai ◽  
S. Hayakawa ◽  
F. Nagase

AbstractEmission mechanisms of the iron Kα-lines in X-ray binaries are discussed in relation with the characteristic temperature Txof continuum radiation thereof. The 6.7 keV line is ascribed to radiative recombination followed by cascades in a corona of ∼ 100 eV formed above the accretion disk. This mechanism is attained for Tx≲ 10 keV as observed for low mass X-ray binaries. The 6.4 keV line observed for binary X-ray pulsars with Tx> 10 keV is likely due to fluorescence outside the He II ionization front.


2016 ◽  
Vol 461 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Marcio G. B. de Avellar ◽  
Mariano Méndez ◽  
Diego Altamirano ◽  
Andrea Sanna ◽  
Guobao Zhang

2018 ◽  
Vol 619 ◽  
pp. A138
Author(s):  
V. Perdelwitz ◽  
S. Czesla ◽  
J. Robrade ◽  
T. Pribulla ◽  
J. H. M. M. Schmitt

Context.Close binary systems provide an excellent tool for determining stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, postulated to be the underlying reason for radius inflation in many of the components. Aims.We extend the sample of low-mass binary systems with well-known X-ray properties. Methods.We analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve was modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras was analyzed to search for hints of orbital modulation. Results.We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data.


Author(s):  
C. S. Anderson ◽  
G. H. Heald ◽  
J. A. Eilek ◽  
E. Lenc ◽  
B. M. Gaensler ◽  
...  

Abstract We present the first Faraday rotation measure (RM) grid study of an individual low-mass cluster—the Fornax cluster—which is presently undergoing a series of mergers. Exploiting commissioning data for the POlarisation Sky Survey of the Universe’s Magnetism (POSSUM) covering a ${\sim}34$ square degree sky area using the Australian Square Kilometre Array Pathfinder (ASKAP), we achieve an RM grid density of ${\sim}25$ RMs per square degree from a 280-MHz band centred at 887 MHz, which is similar to expectations for forthcoming GHz-frequency ${\sim}3\pi$ -steradian sky surveys. These data allow us to probe the extended magnetoionic structure of the cluster and its surroundings in unprecedented detail. We find that the scatter in the Faraday RM of confirmed background sources is increased by $16.8\pm2.4$ rad m−2 within 1 $^\circ$ (360 kpc) projected distance to the cluster centre, which is 2–4 times larger than the spatial extent of the presently detectable X-ray-emitting intracluster medium (ICM). The mass of the Faraday-active plasma is larger than that of the X-ray-emitting ICM and exists in a density regime that broadly matches expectations for moderately dense components of the Warm-Hot Intergalactic Medium. We argue that forthcoming RM grids from both targeted and survey observations may be a singular probe of cosmic plasma in this regime. The morphology of the global Faraday depth enhancement is not uniform and isotropic but rather exhibits the classic morphology of an astrophysical bow shock on the southwest side of the main Fornax cluster, and an extended, swept-back wake on the northeastern side. Our favoured explanation for these phenomena is an ongoing merger between the main cluster and a subcluster to the southwest. The shock’s Mach angle and stand-off distance lead to a self-consistent transonic merger speed with Mach 1.06. The region hosting the Faraday depth enhancement also appears to show a decrement in both total and polarised radio emission compared to the broader field. We evaluate cosmic variance and free-free absorption by a pervasive cold dense gas surrounding NGC 1399 as possible causes but find both explanations unsatisfactory, warranting further observations. Generally, our study illustrates the scientific returns that can be expected from all-sky grids of discrete sources generated by forthcoming all-sky radio surveys.


Author(s):  
Nicolas Scepi ◽  
Mitchell C Begelman ◽  
Jason Dexter

Abstract Dwarf novæ (DNe) and low mass X-ray binaries (LMXBs) are compact binaries showing variability on time scales from years to less than seconds. Here, we focus on explaining part of the rapid fluctuations in DNe, following the framework of recent studies on the monthly eruptions of DNe that use a hybrid disk composed of an outer standard disk and an inner magnetized disk. We show that the ionization instability, that is responsible for the monthly eruptions of DNe, is also able to operate in the inner magnetized disk. Given the low density and the fast accretion time scale of the inner magnetized disk, the ionization instability generates small, rapid heating and cooling fronts propagating back and forth in the inner disk. This leads to quasi-periodic oscillations (QPOs) with a period of the order of 1000 s. A strong prediction of our model is that these QPOs can only develop in quiescence or at the beginning/end of an outburst. We propose that these rapid fluctuations might explain a subclass of already observed QPOs in DNe as well as a, still to observe, subclass of QPOs in LMXBs. We also extrapolate to the possibility that the radiation pressure instability might be related to Type B QPOs in LMXBs.


Sign in / Sign up

Export Citation Format

Share Document