scholarly journals Galaxy rotation curves and preferred reference frame effects

Author(s):  
Hossein Ghaffarnejad ◽  
Razieh Dehghani
Galaxies ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jean Alexandre ◽  
Martyna Kostacinska

2012 ◽  
Vol 21 (11) ◽  
pp. 1242002 ◽  
Author(s):  
PRITI MISHRA ◽  
TEJINDER P. SINGH

Flat galaxy rotation curves and the accelerating Universe both imply the existence of a critical acceleration, which is of the same order of magnitude in both the cases, in spite of the galactic and cosmic length scales being vastly different. Yet, it is customary to explain galactic acceleration by invoking gravitationally bound dark matter, and cosmic acceleration by invoking a "repulsive" dark energy. Instead, might it not be the case that the flatness of rotation curves and the acceleration of the Universe have a common cause? In this essay we propose a modified theory of gravity. By applying the theory on galactic scales we demonstrate flat rotation curves without dark matter, and by applying it on cosmological scales we demonstrate cosmic acceleration without dark energy.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 346
Author(s):  
Felipe J. Llanes-Estrada

The flattening of spiral-galaxy rotation curves is unnatural in view of the expectations from Kepler’s third law and a central mass. It is interesting, however, that the radius-independence velocity is what one expects in one less dimension. In our three-dimensional space, the rotation curve is natural if, outside the galaxy’s center, the gravitational potential corresponds to that of a very prolate ellipsoid, filament, string, or otherwise cylindrical structure perpendicular to the galactic plane. While there is observational evidence (and numerical simulations) for filamentary structure at large scales, this has not been discussed at scales commensurable with galactic sizes. If, nevertheless, the hypothesis is tentatively adopted, the scaling exponent of the baryonic Tully–Fisher relation due to accretion of visible matter by the halo comes out to reasonably be 4. At a minimum, this analytical limit would suggest that simulations yielding prolate haloes would provide a better overall fit to small-scale galaxy data.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 398 ◽  
Author(s):  
Rand Dannenberg

Using the classical vacuum solutions of Newtonian gravity that do not explicitly involve matter, dark matter, or the gravitational constant, subject to an averaging process, a form of gravity relevant to the flattening of galaxy rotation curves results. The latter resembles the solution found if the vacuum is simply assigned a gravitational field density, and a volume of the vacuum is then excluded, with no averaging process. A rationale then follows for why these terms would become important on the galactic scale. Then, a modification of General Relativity, motivated by the Newtonian solutions, that are equivalent to a charge void, is partially defined and discussed in terms of a least action principle.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850007 ◽  
Author(s):  
Christian G. Böhmer ◽  
Nicola Tamanini ◽  
Matthew Wright

We consider a modification of General Relativity motivated by the treatment of anisotropies in Continuum Mechanics. The Newtonian limit of the theory is formulated and applied to galactic rotation curves. By assuming that the additional structure of spacetime behaves like a Newtonian gravitational potential for small deviations from isotropy, we are able to recover the Navarro–Frenk–White profile of dark matter halos by a suitable identification of constants. We consider the Burkert profile in the context of our model and also discuss rotation curves more generally.


2016 ◽  
Vol 466 (2) ◽  
pp. 1648-1668 ◽  
Author(s):  
Harley Katz ◽  
Federico Lelli ◽  
Stacy S. McGaugh ◽  
Arianna Di Cintio ◽  
Chris B. Brook ◽  
...  

2012 ◽  
Vol 423 (1) ◽  
pp. 141-148 ◽  
Author(s):  
V. F. Cardone ◽  
M. Capone ◽  
N. Radicella ◽  
M. L. Ruggiero

Sign in / Sign up

Export Citation Format

Share Document