scholarly journals On the modelling of energetic multi-jet QCD events

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Daniel Turgeman ◽  
Michael Pitt ◽  
Itamar Roth ◽  
Ehud Duchovni

AbstractPhysics beyond the Standard Model (BSM) may be unveiled by studying events with a high number of outgoing jets, produced at the LHC with energies above the TeV scale (energetic multi-jet events). Such events are dominated by QCD processes, where the calculations rely on some sort of approximation. Therefore, it is important to develop a robust approach for modeling such events that could probe the existence of BSM signals. In this note, jet spatial distributions in energetic multi-jet processes were compared using several state-of-the-art MC event generators. Slight differences were found, indicating modelling limitations. Therefore, a data-driven technique for the estimation of processes with a final state that contains a large number of jets is proposed. This procedure can predict jet multiplicities up to a precision of  25% in energetic multi-jet events.

2001 ◽  
Vol 16 (supp01b) ◽  
pp. 888-890
Author(s):  
◽  
BRUCE KNUTESON

We present a quasi-model-independent search for physics beyond the standard model. We define final states to be studied, and construct a rule that identifies a set of variables appropriate for any particular final state. A new algorithm ("Sleuth") searches for regions of excess in the space of those variables and quantifies the significance of any detected excess. After demonstrating the sensititvity of the method, we apply it to the semi-inclusive channel eμX collected in ≈108 pb -1 of [Formula: see text] collisions at [Formula: see text] at the DØ experiment at the Fermilab Tevatron. We find no evidence of new high pT physics in this sample.


2014 ◽  
Vol 35 ◽  
pp. 1460390
Author(s):  
SIMEONE DUSSONI

The MEG experiment started taking data in 2009 looking for the Standard Model suppressed decay μ → e + γ, which, if observed, can reveal Beyond Standard Model physics. It makes use of state-of-the art detectors optimized for operating in conditions of very high intensity, rejecting as much background as possible. The data taking ended August 2013 and an upgrade R&D is started to push the experimental sensitivity. The present upper limit on the decay Branching Ratio (BR) is presented, obtained with the subset of data from 2009 to 2011 run, together with a description of the key features of the upgraded detector.


2018 ◽  
Vol 46 ◽  
pp. 1860072
Author(s):  
Yinghui Guan

The Belle II experiment at the SuperKEKB collider is a major upgrade of the KEK “B factory” facility in Tsukuba, Japan. The machine is designed for an instantaneous luminosity of [Formula: see text], and the experiment is expected to accumulate a data sample of about 50 ab[Formula: see text]. With this amount of data, decays sensitive to physics beyond the Standard Model can be studied with unprecedented precision. One promising set of modes are physics processes with missing energy such as [Formula: see text], [Formula: see text], and [Formula: see text] decays. The [Formula: see text] decay provides one of the cleanest experimental probes of the flavour-changing neutral current process [Formula: see text], which is sensitive to physics beyond the Standard Model. However, the missing energies of the neutrinos in the final state makes the measurement challenging and requires full reconstruction of the spectator [Formula: see text] meson in [Formula: see text] events. This report discusses the expected sensitivities of Belle II for these rare decays.


2006 ◽  
Vol 21 (27) ◽  
pp. 5503-5512 ◽  
Author(s):  
M. R. PENNINGTON

Dalitz analyses are introduced as the method for studying hadronic decays. An accurate description of hadron final states is critical not only to an understanding of the strong coupling regime of QCD, but also to the precision extraction of CKM matrix elements. The relation of such final state interactions to scattering processes is discussed.


2014 ◽  
Vol 31 ◽  
pp. 1460290
Author(s):  
Concezio Bozzi

A review of B and Bs decays is presented. Emphasis is given to processes most sensitive to physics beyond the Standard Model, such as radiative, electroweak and "Higgs" penguin decays, and tree-level decays involving tau leptons in the final state. An outlook on future perspectives is also given.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

The motivation for supersymmetry. The algebra, the superspace, and the representations. Field theory models and the non-renormalisation theorems. Spontaneous and explicit breaking of super-symmetry. The generalisation of the Montonen–Olive duality conjecture in supersymmetric theories. The remarkable properties of extended supersymmetric theories. A brief discussion of twisted supersymmetry in connection with topological field theories. Attempts to build a supersymmetric extention of the standard model and its experimental consequences. The property of gauge supersymmetry to include general relativity and the supergravity models.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for dark matter is conducted in final states containing a photon and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV. The data, collected during 2015–2018 by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb−1. No deviations from the predictions of the Standard Model are observed and 95% confidence-level upper limits between 2.45 fb and 0.5 fb are set on the visible cross section for contributions from physics beyond the Standard Model, in different ranges of the missing transverse momentum. The results are interpreted as 95% confidence-level limits in models where weakly interacting dark-matter candidates are pair-produced via an s-channel axial-vector or vector mediator. Dark-matter candidates with masses up to 415 (580) GeV are excluded for axial-vector (vector) mediators, while the maximum excluded mass of the mediator is 1460 (1470) GeV. In addition, the results are expressed in terms of 95% confidence-level limits on the parameters of a model with an axion-like particle produced in association with a photon, and are used to constrain the coupling gaZγ of an axion-like particle to the electroweak gauge bosons.


Sign in / Sign up

Export Citation Format

Share Document