scholarly journals Phase transition and entropic force of de Sitter black hole in massive gravity

2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Yubo Ma ◽  
Yang Zhang ◽  
Lichun Zhang ◽  
Liang Wu ◽  
Ying Gao ◽  
...  

AbstractIt is well known that de Sitter(dS) black holes generally have a black hole horizon and a cosmological horizon, both of which have Hawking radiation. But the radiation temperature of the two horizons is generally different, so dS black holes do not meet the requirements of thermal equilibrium stability, which brings certain difficulties to the study of the thermodynamic characteristics of black holes. In this paper, dS black hole is regarded as a thermodynamic system, and the effective thermodynamic quantities of the system are obtained. The influence of various state parameters on the effective thermodynamic quantities in the massive gravity space-time is discussed. The condition of the phase transition of the de Sitter black hole in massive gravity space-time is given. We consider that the total entropy of the dS black hole is the sum of the corresponding entropy of the two horizons plus an extra term from the correlation of the two horizons. By comparing the entropic force of interaction between black hole horizon and the cosmological horizon with Lennard-Jones force between two particles, we find that the change rule of entropic force between the two system is surprisingly the same. The research will help us to explore the real reason of accelerating expansion of the universe.

2020 ◽  
Vol 29 (15) ◽  
pp. 2050108
Author(s):  
Yubo Ma ◽  
Yang Zhang ◽  
Ren Zhao ◽  
Shuo Cao ◽  
Tonghua Liu ◽  
...  

In this paper, we investigate the combined effects of the cloud of strings and quintessence on the thermodynamics of a Reissner–Nordström–de Sitter black hole. Based on the equivalent thermodynamic quantities considering the correlation between the black hole horizon and the cosmological horizon, we extensively discuss the phase transitions of the spacetime. Our analysis proves that similar to the case in AdS spacetime, second-order phase transitions could take place under certain conditions, with the absence of first-order phase transition in the charged de Sitter (dS) black holes with cloud of string and quintessence. The effects of different thermodynamic quantities on the phase transitions are also quantitatively discussed, which provides a new approach to study the thermodynamic qualities of unstable dS spacetime. Focusing on the entropy force generated by the interaction between the black hole horizon and the cosmological horizon, as well as the Lennard–Jones force between two particles, our results demonstrate the strong degeneracy between the entropy force of the two horizons and the ratio of the horizon positions, which follows the surprisingly similar law given the relation between the Lennard–Jones force and the ratio of two particle positions. Therefore, the study of the entropy force between two horizons is not only beneficial to the deep exploration of the three modes of cosmic evolution, but also helpful to understand the correlation between the microstates of particles in black holes and those in ordinary thermodynamic systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yang Zhang ◽  
Wen-qi Wang ◽  
Yu-bo Ma ◽  
Jun Wang

In this paper, the effect of the space-time dimension on effective thermodynamic quantities in (n+2)-dimensional Reissner-Nordstrom-de Sitter space has been studied. Based on derived effective thermodynamic quantities, conditions for the phase transition are obtained. The result shows that the accelerating cosmic expansion can be attained by the entropy force arisen from the interaction between horizons of black holes and our universe, which provides a possible way to explain the physical mechanism for the accelerating cosmic expansion.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


2014 ◽  
Vol 29 (09) ◽  
pp. 1450050 ◽  
Author(s):  
Meng-Sen Ma ◽  
Hui-Hua Zhao ◽  
Li-Chun Zhang ◽  
Ren Zhao

After introducing the connection between the black hole horizon and the cosmological horizon, we discuss the thermodynamic properties of Reissner–Nordström–de Sitter (RN–dS) space–time. We present the condition under which RN–dS black hole can exist. Employing Ehrenfest' classification, we conclude that the phase transition of RN–dS black hole is the second-order one. The position of the phase transition point is irrelevant to the electric charge of the system. It only depends on the ratio of the black hole horizon and the cosmological horizon.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950231 ◽  
Author(s):  
M. Chabab ◽  
H. El Moumni ◽  
S. Iraoui ◽  
K. Masmar

The phase structure of charged anti-de Sitter black hole in massive gravity is investigated using the unstable circular photon orbits formalism, concretely we establish a direct link between the null geodesics and the critical behavior thermodynamic of such black hole solution. Our analysis reveals that the radius and the impact parameter corresponding to the unstable circular orbits can be used to probe the thermodynamic phase structure. We also show that the latter are key quantities to characterize the order of Van der Waals-like phase transition. Namely, we found a critical exponent around [Formula: see text]. All these results support further that the photon trajectories can be used as a useful and crucial tool to probe the thermodynamic black holes criticality.


2016 ◽  
Vol 32 (02) ◽  
pp. 1750017 ◽  
Author(s):  
Huai-Fan Li ◽  
Meng-Sen Ma ◽  
Ya-Qin Ma

We study the thermodynamic properties of Schwarzschild–de Sitter (SdS) black hole and Reissner–Nordström–de Sitter (RNdS) black hole in view of global and effective thermodynamic quantities. Making use of the effective first law of thermodynamics, we can derive the effective thermodynamic quantities of de Sitter black holes. It is found that these effective thermodynamic quantities also satisfy Smarr-like formula. Especially, the effective temperatures are nonzero in the Nariai limit. By calculating heat capacity and Gibbs free energy, we find SdS black hole is always thermodynamically stable and RNdS black hole may undergoes phase transition at some points.


2020 ◽  
Vol 35 (19) ◽  
pp. 2050090 ◽  
Author(s):  
Yawar H. Khan ◽  
Prince A. Ganai

Taking de Sitter space–time as a thermodynamic system, we study the effects of quantum gravity on thermodynamic quantities of de Sitter black holes in massive gravity. We enumerate the leading order corrections arising in quantum gravity regime on various thermodynamic quantities like Helmholtz free energy, Gibbs free energy, specific heat and pressure. Our results show that quantum corrections have tendency to induce stability. Moreover we observe that the parameters from the massive gravity have deeper effect on the evolution of de Sitter space–time in quantum gravity regime. Such an analysis could be helpful in understanding inflation and evolution of universe at early times.


2007 ◽  
Vol 22 (32) ◽  
pp. 6089-6131 ◽  
Author(s):  
M. RAMÓN MEDRANO ◽  
N. G. SÁNCHEZ

An effective string theory in physically relevant cosmological and black hole space–times is reviewed. Explicit computations of the quantum string entropy, partition function and quantum string emission by black holes (Schwarzschild, rotating, charged, asymptotically flat, de Sitter dS and anti-de Sitter AdS space–times) in the framework of effective string theory in curved backgrounds provide an amount of new quantum gravity results as: (i) gravitational phase transitions appear with a distinctive universal feature: a square-root branch point singularity in any space–time dimensions. This is of the type of the de Vega–Sánchez transition for the thermal self-gravitating gas of point particles. (ii) There are no phase transitions in AdS alone. (iii) For dS background, upper bounds of the Hubble constant H are found, dictated by the quantum string phase transition. (iv) The Hawking temperature and the Hagedorn temperature are the same concept but in different (semiclassical and quantum) gravity regimes respectively. (v) The last stage of black hole evaporation is a microscopic string state with a finite string critical temperature which decays as usual quantum strings do in nonthermal pure quantum radiation (no information loss). (vi) New lower string bounds are given for the Kerr–Newman black hole angular momentum and charge, which are entirely different from the upper classical bounds. (vii) Semiclassical gravity states undergo a phase transition into quantum string states of the same system, these states are duals of each other in the precise sense of the usual classical–quantum (wave–particle) duality, which is universal irrespective of any symmetry or isommetry of the space–time and of the number or the kind of space–time dimensions.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


Sign in / Sign up

Export Citation Format

Share Document