scholarly journals Gauge invariance, infrared/collinear singularitiesand tree level matrix element for $e^ + e^- \to \nu_e \bar{\nu}_e \gamma \gamma$

2005 ◽  
Vol 44 (4) ◽  
pp. 489-503 ◽  
Author(s):  
Z. Was
2000 ◽  
Vol 15 (29) ◽  
pp. 4603-4622 ◽  
Author(s):  
RODOLFO CASANA ◽  
SEBASTIÃO A. DIAS

We consider the detailed renormalization of two (1+1)-dimensional gauge theories which are quantized without preserving gauge invariance: the chiral and the "anomalous" Schwinger models. By regularizing the nonperturbative divergences that appear in fermionic Green functions of both models, we show that the "tree level" photon propagator is ill defined, thus forcing one to use the complete photon propagator in the loop expansion of these functions. We perform the renormalization of these divergences in both models to one-loop level, defining it in a consistent and semiperturbative sense that we propose in this paper.


2004 ◽  
Vol 19 (38) ◽  
pp. 2857-2870 ◽  
Author(s):  
B. SATHIAPALAN

We extend an earlier proposal for a gauge-invariant description of off-shell open strings (at tree level), using loop variables, to off-shell closed strings (at tree level). The basic idea is to describe the closed string amplitudes as a product of two open string amplitudes (using the technique of Kawai, Lewellen and Tye). The loop variable techniques that were used earlier for open strings can be applied here mutatis mutandis. It is a proposal for a theory whose on-shell amplitudes coincide with those of the closed bosonic string in 26 dimensions. It is also gauge-invariant off-shell. As was the case with the open string, the interacting closed string looks like a free closed string thickened to a band.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Rikkert Frederix ◽  
Ioannis Tsinikos

Abstract We introduce an improvement to the FxFx matrix element merging procedure for pp →$$ t\overline{t}W $$ t t ¯ W production at NLO in QCD with one and/or two additional jets. The main modification is an improved treatment of jets that are not logarithmically enhanced in the low transverse-momentum regime. We provide predictions for the inclusive cross section and the $$ t\overline{t}W $$ t t ¯ W differential distributions including parton-shower effects. Taking also the NLO EW corrections into account, this results in the most-accurate predictions for this process to date. We further proceed to include the on-shell LO decays of the $$ t\overline{t}W $$ t t ¯ W including the tree-level spin correlations within the narrow-width approximation, focusing on the multi-lepton signatures studied at the LHC. We find a ∼30% increase over the NLO QCD prediction and large non-flat K-factors to differential distributions.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Stefano Frixione ◽  
Bryan R. Webber

Abstract We discuss how colour flows can be used to simplify the computation of matrix elements, and in the context of parton shower Monte Carlos with accuracy beyond leading-colour. We show that, by systematically employing them, the results for tree-level matrix elements and their soft limits can be given in a closed form that does not require any colour algebra. The colour flows that we define are a natural generalization of those exploited by existing Monte Carlos; we construct their representations in terms of different but conceptually equivalent quantities, namely colour loops and dipole graphs, and examine how these objects may help to extend the accuracy of Monte Carlos through the inclusion of subleading-colour effects. We show how the results that we obtain can be used, with trivial modifications, in the context of QCD+QED simulations, since we are able to put the gluon and photon soft-radiation patterns on the same footing. We also comment on some peculiar properties of gluon-only colour flows, and their relationships with established results in the mathematics of permutations.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Rikkert Frederix ◽  
Timea Vitos

Abstract We investigate the next-to-leading-colour (NLC) contributions to the colour matrix in the fundamental and the colour-flow decompositions for tree-level processes with all gluons, one quark pair and two quark pairs. By analytical examination of the colour factors, we find the non-zero elements in the colour matrix at NLC. At this colour order, together with the symmetry of the phase-space, it is reduced from factorial to polynomial the scaling of the contributing dual amplitudes as the number of partons participating in the scattering process is increased. This opens a path to an accurate tree-level matrix element generator of which all factorial complexity is removed, without resulting to Monte Carlo sampling over colour.


2011 ◽  
Vol 26 (07) ◽  
pp. 461-467
Author(s):  
ROBERT FOOT ◽  
ARCHIL KOBAKHIDZE

We discuss an alternative implementation of the Higgs boson within the Standard Model which is possible if the renormalizability condition is relaxed. Namely, at energy scale Λ the Higgs boson interacts at tree-level only with matter fermions, while the full gauge invariance is still maintained. The interactions with the electroweak gauge bosons are induced at low energies through the radiative corrections. In this scenario the Higgs boson can be arbitrarily heavy, interacting with the Standard Model fields arbitrarily weakly. No violation of unitarity in the scattering of longitudinal electroweak bosons occurs, since they become unphysical degrees of freedom at energies Λ ~ TeV.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Charlotte Sleight ◽  
Massimo Taronna

Abstract We study the consistency of the cubic couplings of a (partially-)massless spinning field to two scalars in (d + 1)-dimensional de Sitter space. Gauge invariance of observables with external (partially)-massless spinning fields translates into Ward-Takahashi identities on the boundary. Using the Mellin-Barnes representation for boundary correlators in momentum space, we give a systematic study of Ward-Takahashi identities for tree-level 3- and 4-point processes involving a single external (partially-)massless field of arbitrary integer spin-J. 3-point Ward-Takahashi identities constrain the mass of the scalar fields to which a (partially-)massless spin-J field can couple. 4-point Ward-Takahashi identities then constrain the corresponding cubic couplings. For massless spinning fields, we show that Weinberg’s flat space results carry over to (d+1)-dimensional de Sitter space: for spins J = 1, 2 gauge-invariance implies charge-conservation and the equivalence principle while, assuming locality, higher-spins J > 2 cannot couple consistently to scalar matter. This result also applies to anti-de Sitter space. For partially-massless fields, restricting for simplicity to those of depth-2, we show that there is no consistent coupling to scalar matter in local theories. Along the way we also give a detailed account of how contact amplitudes with and without derivatives are represented in the Mellin-Barnes representation. Various new explicit expressions for 3- and 4-point functions involving (partially-)massless fields and conformally coupled scalars in dS4 are given.


2016 ◽  
Vol 93 (2) ◽  
Author(s):  
A. R. Vieira ◽  
A. L. Cherchiglia ◽  
Marcos Sampaio
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document