scholarly journals ON THE RENORMALIZABILITY OF THEORIES WITH GAUGE ANOMALIES

2000 ◽  
Vol 15 (29) ◽  
pp. 4603-4622 ◽  
Author(s):  
RODOLFO CASANA ◽  
SEBASTIÃO A. DIAS

We consider the detailed renormalization of two (1+1)-dimensional gauge theories which are quantized without preserving gauge invariance: the chiral and the "anomalous" Schwinger models. By regularizing the nonperturbative divergences that appear in fermionic Green functions of both models, we show that the "tree level" photon propagator is ill defined, thus forcing one to use the complete photon propagator in the loop expansion of these functions. We perform the renormalization of these divergences in both models to one-loop level, defining it in a consistent and semiperturbative sense that we propose in this paper.

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
John Joseph M. Carrasco ◽  
Ingrid A. Vazquez-Holm

Abstract The naive double-copy of (multi) loop amplitudes involving massive matter coupled to gauge theories will generically produce amplitudes in a gravitational theory that contains additional contributions from propagating antisymmetric tensor and dilaton states even at tree-level. We present a graph-based approach that combines the method of maximal cuts with double-copy construction to offer a systematic framework to isolate the pure Einstein-Hilbert gravitational contributions through loop level. Indeed this allows for a bootstrap of pure-gravitational results from the double-copy of massive scalar-QCD. We apply this to construct the novel result of the D-dimensional one-loop five-point QFT integrand relevant in the classical limit to generating observables associated with the radiative effects of massive black-hole scattering via pure Einstein-Hilbert gravity.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Luis F. Alday ◽  
Xinan Zhou

Abstract We demonstrate the simplicity of AdS5× S5 IIB supergravity at one loop level, by studying non-planar holographic four-point correlators in Mellin space. We develop a systematic algorithm for constructing one-loop Mellin amplitudes from the tree-level data, and obtain a simple closed form answer for the $$ \left\langle {\mathcal{O}}_2^{SG}{\mathcal{O}}_2^{SG}{\mathcal{O}}_p^{SG}{\mathcal{O}}_p^{SG}\right\rangle $$ O 2 SG O 2 SG O p SG O p SG correlators. The structure of this expression is remarkably simple, containing only simultaneous poles in the Mellin variables. We also study the flat space limit of the Mellin amplitudes, which reproduces precisely the IIB supergravity one-loop amplitude in ten dimensions. Our results provide nontrivial evidence for the persistence of the hidden conformal symmetry at one loop.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 280
Author(s):  
Loriano Bonora ◽  
Rudra Prakash Malik

This article, which is a review with substantial original material, is meant to offer a comprehensive description of the superfield representations of BRST and anti-BRST algebras and their applications to some field-theoretic topics. After a review of the superfield formalism for gauge theories, we present the same formalism for gerbes and diffeomorphism invariant theories. The application to diffeomorphisms leads, in particular, to a horizontal Riemannian geometry in the superspace. We then illustrate the application to the description of consistent gauge anomalies and Wess–Zumino terms for which the formalism seems to be particularly tailor-made. The next subject covered is the higher spin YM-like theories and their anomalies. Finally, we show that the BRST superfield formalism applies as well to the N=1 super-YM theories formulated in the supersymmetric superspace, for the two formalisms go along with each other very well.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Joe Davighi ◽  
Nakarin Lohitsiri

Abstract In this note we review the role of homotopy groups in determining non-perturbative (henceforth ‘global’) gauge anomalies, in light of recent progress understanding global anomalies using bordism. We explain why non-vanishing of πd(G) is neither a necessary nor a sufficient condition for there being a possible global anomaly in a d-dimensional chiral gauge theory with gauge group G. To showcase the failure of sufficiency, we revisit ‘global anomalies’ that have been previously studied in 6d gauge theories with G = SU(2), SU(3), or G2. Even though π6(G) ≠ 0, the bordism groups $$ {\Omega}_7^{\mathrm{Spin}}(BG) $$ Ω 7 Spin BG vanish in all three cases, implying there are no global anomalies. In the case of G = SU(2) we carefully scrutinize the role of homotopy, and explain why any 7-dimensional mapping torus must be trivial from the bordism perspective. In all these 6d examples, the conditions previously thought to be necessary for global anomaly cancellation are in fact necessary conditions for the local anomalies to vanish.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Riccardo Argurio ◽  
Matteo Bertolini ◽  
Sebastián Franco ◽  
Eduardo García-Valdecasas ◽  
Shani Meynet ◽  
...  

Abstract We study 4d$$ \mathcal{N} $$ N = 1 gauge theories engineered via D-branes at orientifolds of toric singularities, where gauge anomalies are cancelled without the introduction of non-compact flavor branes. Using dimer model techniques, we derive geometric criteria for establishing whether a given singularity can admit anomaly-free D-brane configurations purely based on its toric data and the type of orientifold projection. Our results therefore extend the dictionary between geometric properties of singularities and physical properties of the corresponding gauge theories.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kang Zhou

Abstract We generalize the unifying relations for tree amplitudes to the 1-loop Feynman integrands. By employing the 1-loop CHY formula, we construct differential operators which transmute the 1-loop gravitational Feynman integrand to Feynman integrands for a wide range of theories, including Einstein-Yang-Mills theory, Einstein-Maxwell theory, pure Yang-Mills theory, Yang-Mills-scalar theory, Born-Infeld theory, Dirac-Born-Infeld theory, bi-adjoint scalar theory, non-linear sigma model, as well as special Galileon theory. The unified web at 1-loop level is established. Under the well known unitarity cut, the 1-loop level operators will factorize into two tree level operators. Such factorization is also discussed.


2014 ◽  
Vol 29 (22) ◽  
pp. 1450107 ◽  
Author(s):  
A. Moyotl ◽  
H. Novales-Sanchez ◽  
J. J. Toscano ◽  
E. S. Tututi

Lorentz violation emerged from a fundamental description of nature may impact, at low energies, the Maxwell sector, so that contributions from such new physics to the electromagnetic vertex would be induced. Particularly, nonbirefringent CPT-even effects from the electromagnetic sector modified by the Lorentz- and CPT-violating Standard Model Extension alter the structure of the free photon propagator. We calculate Lorentz-violating contributions to the electromagnetic vertex, at the one-loop level, by using a modified photon propagator carrying this sort of effects. We take the photon off shell, and find an expression that involves both isotropic and anisotropic effects of nonbirefringent violation of Lorentz invariance. Our analysis of the one-loop vertex function includes gauge invariance, transformation properties under C, P and T, and tree-level contributions from Lorentz-violating nonrenormalizable interactions. These elements add to previous studies of the one-loop contributions to the electromagnetic vertex in the context of Lorentz violation in the photon sector. Finally, we restrict our analysis to the isotropic case and derive a finite contribution from isotropic Lorentz violation to the anomalous magnetic moment of fermions that coincides with the result already reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document